தாக்குதல் (இயற்பியல்)
From Wikipedia, the free encyclopedia
Remove ads
மரபார்ந்த விசையியலில் , தாக்குதல் (இயற்பியல்) அல்லது கணத்தாக்கம்(impulse) என்பது (குறியீடு: J அல்லது Imp)[1])செயல்படும் விசைக்கும் மற்றும் நேர இடைவெளிக்கும் இடையேயுள்ள தொகையீடாகும். இதில் விசை திசையன் அளவாகும், அதனால் அதன் திசையிலே கணத்தாக்கமும் செயல்படுகிறது.
தாக்குதல் (impulse) என்பது பெரும விசை குறுகிய காலத்தில் செயல்படும் பொழுது, விசையின் மதிப்பு. காலம் ஆகியவற்றின் பெருக்கல் பலனாக இருக்கும். சுத்தியலின் மூலம் சுவரில் ஆணியடிப்பதும் தாக்குதலே ஆகும். இவ்வகை விசையில் பயன் தருவதும் (சுத்தியலால் ஆணி அறைதல்) பாரதூரமான விளைவுகளை ஏற்படுத்துவதும் உண்டு (வாகன விபத்துக்கள்). இதனை இலங்கை வழக்கில் கணக்காய்வு விசை எனவும் சொல்வதுண்டு.
ஒரு பொருளின் மீது செயல்படும் கணத்தாக்கமானது, அதே திசையில் நேர் கோட்டில் செயல்படும் உந்தத்தில் ஏற்படும் மாற்றத்திற்கான திசையன் அளவுக்குச் சமம்.[2] அனைத்துலக முறை அலகுகளின் படி கணத்தாக்கத்தின் அலகு நியூட்டன் வினாடி (N⋅s) ஆகும். பரிமாணப்பகுப்பின் படி (dimensional analysis) உந்தம் மற்றும் கணத்தாக்கத்தின் பரிமாணம் கிலோகிராம் மீட்டர் வினாடி−1 (kg⋅m/s) ஆகும். ஆங்கில பொறியியல் அலகுகளின் (English engineering units) படி கணத்தாக்கத்தின் அலகு பவுண்டு-விநாடி (lbf⋅s) அல்லது சிலக்கு-அடி-வினாடி−1 (Slug-foot per second) (slug⋅ft/s) ஆகும்.
ஒரு பொருளின் மீது தொகுபயன் விசை (resultant force) செயல்படும் வரை முடுக்கம் மற்றும் திசைவேக மாற்றம் ஆகியவை ஏற்படுகிறது. தொகுபயன் விசை அதிக நேரம் செயல்படும் போது ஏற்படும் உந்தம், குறைந்த நேரம் செயல்படும் விசையினால் ஏற்படும் உந்தத்தை விட அதிகம். அதாவது ஒரு பொருளின் மீது செயல்படும் உந்தத்தில் ஏற்படும் மாற்றம், சராசரி விசை மற்றும் காலத்தின் பெருக்கல் தொகைக்குச் சமம். சிறிய விசை அதிக காலம் ஒரு பொருளின் மீது செயல்படும் போது உண்டாகும் உந்தம் மற்றும் கணத்தாக்கம், அதிக விசை குறைந்த காலம் செயல்படுவதற்குச் சமம்.
கணத்தாக்கம் என்பது செயல்படும் நேரத்தைப் பொறுத்து மாறுபடும் தொகுபயன் விசையின் (F) தொகையீடாகும்.
- I தாக்குதல் (J எனவும் குறிக்கப்படும்),
- F விசை
- dt நேரத்தை பொறுத்து இது அமைகின்றது.
Remove ads
மாறாத நிறை கொண்ட ஒரு பொருளின் கணத்தாக்கத்திற்கான கணக்கீடு
t1 காலத்திலிருந்து t2 காலம் வரை, ஒரு பொருளின் மீது செயல்படும் J என்ற கணத்தாக்கத்தின் அளவு:[4]
இதில் F என்பது தொகுபயன் விசை t1 காலத்திலிருந்து t2 காலம் வரை செயல்படுகிறது.
நியூட்டனின் இரண்டாம் விதியின் அடிப்படையில், விசையும் உந்தமும், கீழ்க்கண்ட சமன்பாட்டால் தொடர்புபடுத்தப்படுகின்றன.
எனவே,
இதில் Δ'p 'என்பது t1 காலத்திலிருந்து t2 காலம் வரை செயல்படும், உந்தத்தில் ஏற்படும் மாற்றம் ஆகும். இதையே கணத்தாக்க-உந்த தேற்றம் என்கிறோம்.[5]
முடிவாக, தொகுபயன் விசை ஒரு பொருளின் மீது செயல்படும் போது, அதன் உந்தத்தில் ஏற்படும் மாற்றம் கணத்தாக்கம் ஆகும். நிறை மாறாமல் இருக்கும் போது கணத்தாக்கம் கீழ்க்கண்ட சமன்பாட்டால் விளக்கப்படுகிறது.
இதில்
- F கொடுக்கப்பட்ட தொகுபயன் விசை,
- t1 லிருந்து t2 வரை கணத்தாக்கம் செயல்படுகிறது.,
- m பொருளின் நிறை,
- v2 இறுதி திசைவேகம் , மற்றும்
- v1 தொடக்க திசைவேகம்.
உந்தமும் கணத்தாக்கமும் ஒரே அலகு மற்றும் பரிமாண வாய்பாட்டையும் (M L T−1) பெற்றுள்ளது. அவை அனைத்துலக முறை அலகுகளின் படி கிலோகிராம்⋅மீட்டர் / நொடி (கால அளவு) = நியூட்டன் (அலகு)⋅நொடி (கால அளவு) ஆங்கில பொறியியல் அலகுகளின் படி கணத்தாக்கத்தின் அலகு பவுண்டு-விநாடி (lbf⋅s) அல்லது சிலக்கு-அடி-வினாடி−1 (slug⋅ft/s) ஆகும்.

கணத்தாக்கம் என்பது வேகமாகச் செயல்படும் விசை என வரையறுக்கப்படுகிறது. அதாவது கொடுக்கப்பட்ட விசையால் கால மாறுபாடு இல்லாமல் உந்தத்தில் ஏற்படும் மாற்றமே கணத்தாக்கம் ஆகும். இவை இயற்பியல் இயந்திரங்களின் செயல்பாட்டை கணக்கிட பயன்படுகிறது.
Remove ads
மாறும் நிறை கொண்ட ஒரு பொருளின் கணத்தாக்கத்திற்கான கணக்கீடு
நியூட்டனின் இரண்டாம் விதியின் அடிப்படையில், மாறுபடும் நிறை கொண்ட தாரை உந்துகை மற்றும் ஏவூர்தி ஆகியவற்றின் உந்தம் மற்றும் கணத்தாக்கம் கணக்கிடப்படுகிறது. இவ் வகை கணத்தாக்கம், தன் கணத்தாக்கம் எனப்படுகிறது.
மேலும் பார்க்க
மேற்கோள்கள்
உசாத்துணைகள்
வெளியிணைப்புகள்
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads