பித்தகோரசு மும்மை
From Wikipedia, the free encyclopedia
Remove ads
a, b, c என்ற மூன்று நேர் முழு எண்களானவை


என்ற முடிவை நிறைவு செய்தால், பித்தகோரசு மும்மை (Pythagorean triple) என அழைக்கப்படுகின்றன. இம் மும்மையானது (a, b, c) என எழுதப்படுகிறது. பித்தகோரசு மும்மைகளிலேயே மிகஎளிமையான மும்மை (3, 4, 5) ஆகும்.
(a, b, c) ஒரு பித்தகோரசு மும்மை எனில் (ka, kb, kc)ம் ஒரு பித்தகோரசு மும்மையாக இருக்கும் (k என்பது இங்கு ஏதேனுமொரு நேர் முழுஎண்). ஒரு பித்தகோரசு மும்மையிலுள்ள மூன்று நேர் முழுஎண்களும் சார்பகா எண்களாக இருந்தால் அந்த மும்மையானது தொடக்கநிலை பித்தகோரசு மும்மை எனப்படும்.
ஒவ்வொரு பித்தகோரசு மும்மையிலுள்ள மூன்று நேர் முழுஎண்களும் பித்தகோரசு தேற்றத்தின் முடிவை (a2 + b2 = c2) நிறைவு செய்வதால், அவை இப் பெயரால் அழைக்கப்படுகின்றன.
ஒரு செங்கோண முக்கோணத்தின் பக்கங்கள் பித்தகோரசு மும்மையாக அமையுமானால், அம் முக்கோணம், பித்தகோரசு முக்கோணம் என அழைக்கப்படும்.
ஒவ்வொரு பித்தகோரசு மும்மையிலுள்ள எண்களைப் பக்கங்களாகக் கொண்ட செங்கோண முக்கோணத்தின் பக்கங்கள் முழுஎண்களாகும். ஆனால் ஒரு செங்கோண முக்கோணத்தின் பக்க அளவுகள் முழுஎண்களாக இல்லாதிருக்கும்போது அவை ஒரு பித்தகோரசு மும்மையாக அமையாது. எடுத்துக்காட்டாக,
- a = b = 1, c = √2 பக்கங்கள் கொண்ட முக்கோணம் ஒரு செங்கோண முக்கோணம். ஆனால் √2 ஒரு முழுஎண் அல்லததால், (1, 1, √2) ஒரு பித்தகோரசு மும்மை இல்லை.
Remove ads
எடுத்துக்காட்டுகள்

c ≤ 100 என்ற கட்டுப்பாட்டின் கீழ் 16 தொடக்கநிலைப் பித்தகோரசு மும்மைகள் உள்ளன:
(3, 4, 5 ) | (5, 12, 13) | (8, 15, 17) | (7, 24, 25) |
(20, 21, 29) | (12, 35, 37) | ( 9, 40, 41) | (28, 45, 53) |
(11, 60, 61) | (16, 63, 65) | (33, 56, 65) | (48, 55, 73) |
(13, 84, 85) | (36, 77, 85) | (39, 80, 89) | (65, 72, 97) |
100 < c ≤ 300 என்ற கட்டுப்பாட்டின்கீழ் அமையும் பித்தகோரசு மும்மைகள்:
(20, 99, 101) | (60, 91, 109) | (15, 112, 113) | (44, 117, 125) |
(88, 105, 137) | (17, 144, 145) | (24, 143, 145) | (51, 140, 149) |
(85, 132, 157) | (119, 120, 169) | (52, 165, 173) | (19, 180, 181) |
(57, 176, 185) | (104, 153, 185) | (95, 168, 193) | (28, 195, 197) |
(84, 187, 205) | (133, 156, 205) | (21, 220, 221) | (140, 171, 221) |
(60, 221, 229) | (105, 208, 233) | (120, 209, 241) | (32, 255, 257) |
(23, 264, 265) | (96, 247, 265) | (69, 260, 269) | (115, 252, 277) |
(160, 231, 281) | (161, 240, 289) | (68, 285, 293) |
Remove ads
உருவாக்குதல்
யூக்ளிடின் வாய்ப்பாடு, m, n (m > n) என்ற இரு நேர் முழுஎண்களைக் கொண்டு பித்தகோரசு மும்மைகளை உருவாக்கப் பயன்படும் அடிப்படை வாய்ப்பாடு ஆகும்[1].
யூக்ளிடின் வாய்ப்பாடு:
m, n சார்பகா எண்களாகவும், m − n ஒற்றை எண்ணாகவும் இருந்தால், இருந்தால் மட்டுமே, யூக்ளிடின் வாய்ப்பாட்டைப் பயன்படுத்தி உருவாக்கப்படும் பித்தாகரசு மும்மைகள் தொடக்கநிலை மும்மைகளாக இருக்கும். m , n இரண்டுமே ஒற்றை எண்களாக இருந்தால், யூக்ளிடின் வாய்ப்பாட்டின்படி காணப்படும் a, b, c மூன்றும் இரட்டை எண்களாகும். எனவே உருவாக்கப்பட்ட மும்மை தொடக்கநிலை மும்மையாக இருக்காது. எனினும் அந்த மும்மையின் மூன்று எண்களையும் எண் இரண்டால் வகுத்துத் தொடக்கநிலை மும்மையைப் பெறமுடியும்[2].
யூக்ளிடின் வாய்ப்பாட்டைக் கொண்டு அனைத்து தொடக்கநிலை பித்தகோரசு மும்மைகளையும் உருவாக்க முடியும். ஆனால் மற்றைய பித்தாகாரசு மும்மைகளை உருவாக்க முடிவதில்லை. இதற்காக யூக்ளிடின் வாய்ப்பாட்டினை k என்ற துணையலகைச் சேர்த்துப் பின்வருமாறு மாற்றினால் அனைத்து பித்தகோரசு மும்மைகளையும் அவ் வாய்ப்பாட்டைக் கொண்டு உருவாக்கலாம்
இங்கு m, n, k நேர் முழுஎண்கள் (m > n); m − n ஒற்றை எண்; m , n சார்பகா எண்கள்.
யூக்ளிடின் வாய்ப்பாட்டைத் தொடர்ந்து பித்தாகோரசு மும்மைகளை உருவாக்கப் பல வாய்ப்பாடுகள் கண்டறியப்பட்டுள்ளன.
Remove ads
அடிப்படைப் பண்புகள்
(a, b, c) என்ற பித்தகோரசு மும்மையின் பண்புகள் (இங்கு a < b < c , a , b ஆகிய இரண்டில் எது இரட்டை எண், எது ஒற்றை எண் என்று குறிப்பிடப்படவில்லை) :
- (c − a)(c − b)2 எப்பொழுதும் முழுவர்க்கமாகும்.
[3] ஆனால் இப்பண்பின் மறுதலை உண்மையாக இருக்காது.
- a, b, c ஆகிய மூன்றில், அதிகபட்சமாக ஒரு எண் வர்க்கமாக இருக்கும்.[4]
- பித்தகோரசு முக்கோணத்தின் பரப்பளவு ஒரு இயல் எண்ணின் வர்க்கமாகவோ[5]:p. 17 அல்லது ஒரு இயல் எண்ணின் வர்க்கத்தின் இருமடங்காகவோ இருக்க முடியாது[5]:p. 21
- a, b ஆகிய இரண்டில் ஏதேனும் ஒன்று மட்டும் ஒற்றையெண்; மேலும் c ஒரு ஒற்றையெண்.[6]
- a, b ஆகிய இரு எண்களில் ஏதேனும் ஒன்று மட்டும் 3ஆல் வகுபடக்கூடியதாக இருக்கும்.[7]
- a, b ஆகிய இரு எண்களில் ஏதேனும் ஒன்று மட்டும் 4ஆல் வகுபடக்கூடியதாக இருக்கும்.[7]
- a, b, c ஆகிய இரு எண்களில் ஒன்று மட்டும் 5ஆல் வகுபடக்கூடியதாக இருக்கும்.[7]
- abc ஐ வகுக்கும் மிகப்பெரிய எண் 60 ஆகும்.[8]
- c இன் பகாக் காரணிகள் அனைத்தும்4n + 1 (பித்தகோரசு பகாத்தனி) வடிவில் அமையும்[9]
- பித்தகோரசு முக்கோணத்தின் பரப்பளவு (K = ab/2) ஒரு இரட்டை முற்றொப்பு எண் (congruent number).[10]
- ஒவ்வொரு பித்தகோரசு முக்கோணத்தின் உள்வட்ட ஆரமும் மூன்று வெளிவட்ட ஆரங்களும் இயல் எண்களாக இருக்கும்.
- தொடக்கநிலை மும்மைக்குரிய முக்கோணத்தின் உள்வட்ட ஆரம்:
m2–n2, 2mn, m2+n2 (செம்பக்கம்) ஆகிய பக்கங்களுக்கு எதிரே அமையும் வெளிவட்டங்களின் ஆரங்கள்:
- m(m − n)
- n(m + n)
- m(m + n) ஆகும்.[11]
- தேலேசுத் தேற்றத்தின் மறுதலையின்படி, ஒரு செங்கோண முக்கோணத்தின் சுற்றுவட்டத்தின் விட்டமானது அந்த செங்கோண முக்கோணத்தின் செம்பக்கமாகும்.
எனவே தொடக்கநிலை பித்தகோரசு மும்மைகளுக்குரிய செங்கோண முக்கோணங்களின் சுற்றுவட்டத்தின் விட்டம்:
- ,
சுற்றுவட்ட ஆரம்:
- m , n இரண்டிலொன்று ஒற்றையாகவும் மற்றது இரட்டை எண்ணாகவும் இருக்குமென்பதால் இந்த ஆரமானது முழுஎண்ணாக இல்லாமல் விகிதமுறு எண்ணாக இருக்கும்.
- பித்தகோரசு முக்கோணத்தின் பரப்பளவை அதன் உள்வட்ட ஆரம், மூன்று வெளிவட்ட ஆரங்களால் பெருக்கக் கிடைக்கும் நான்கு நேர் முழுஎண்கள்: இவை டேக்கார்ட்டின் தேற்றத்தின் கூற்றை நிறைவு செய்கின்றன[12].
- ஒரு பித்தகோரசு மும்மையின் செம்பக்கமும் ஒரு தாங்கு பக்கமும் வேறெந்தவொரு பித்தகோரசு மும்மையின் இரு தாங்கு பக்கங்களாக இருக்காது.[5]:p. 14
- ஒவ்வொரு தொடக்கநிலை மும்மைக்குரிய செங்கோண முக்கோணத்தின் பரப்பளவு மற்றும் அரைச்சுற்றளவுகளின் வர்க்கங்களின் விகிதமானது அந்தந்த முக்கோணங்களுக்குத் தனித்ததாக இருக்கும். அவ்விகிதம்:[13]
Remove ads
மேற்கோள்கள்
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads