Топ питань
Часова шкала
Чат
Перспективи
Оцтова кислота
органічна сполука, одноосновна карбонова кислота З Вікіпедії, вільної енциклопедії
Remove ads
О́цтова кислота́ — органічна сполука, одноосновна карбонова кислота складу CH3COOH. За звичайних умов є безбарвною рідиною із різким запахом. Температура плавлення чистої кислоти дещо нижча від кімнатної температури, при замерзанні вона перетворюється на безбарвні кристали — це дало їй технічне найменування льодяна оцтова кислота.
Назва кислоти утворена словом оцет, що походить від лат. acetum — кисле вино. За номенклатурою IUPAC вона має систематичну назву етанова кислота, котра характеризує сполуку як похідну етану. Оскільки молекула кислоти має у своєму складі функціональну групу ацетил CH3CO (умовне позначення Ac), її формула також може записуватися як AcOH. У контексті кислотно-основних взаємодій символом Ac інколи позначається ацетат-аніон CH3COO- — в такому випадку формула матиме запис HAc.
Взаємодіючи з металами, лугами та спиртами, оцтова кислота утворює ряд солей та естерів — ацетатів (етаноатів).
Оцтова кислота — один з базових продуктів промислового органічного синтезу. Більш ніж 65 % світового виробництва оцтової кислоти йде на виготовлення полімерів, похідних целюлози та вінілацетату. Полівінілацетат є основою багатьох ґрунтівних покрить та фарб. З ацетатної целюлози виготовляють ацетатне волокно. Оцтова кислота та її естери важливі промислові розчинники та екстрагенти.
Remove ads
Загальні відомості
Оцтова кислота відома людству з прадавніх часів. Оцет, 4–12 % розчин оцтової кислоти у воді, як продукт ферментації вина набув широкого використання більш ніж 5000 років тому, перш за все як харчовий консервант. Давньогрецький лікар Гіппократ використовував розчини кислоти як антисептик, а також у складі настоянок проти численних патологічних станів, включаючи гарячку, запори, шлункові виразки, плеврит.[3]
Оцтова кислота міститься в низьких концентраціях у багатьох рослинних і тваринних системах. Вона, зокрема, синтезується бактеріями роду Acetobacter і Clostridium. Серед роду Acetobacter найбільш ефективним є вид Acetobacter aceti.
У 1996 році американські науковці повідомили про спостереження молекул оцтової кислоти у газопиловій хмарі Стрілець B2. Це відкриття вперше здійснено із застосуванням інтерферометричного обладнання.[4]
Remove ads
Фізичні властивості
Узагальнити
Перспектива

Оцтова кислота за стандартного стану є безбарвною рідиною із різким запахом. При замерзанні, за температури 16,635 °С, вона перетворюється на прозорі кристали (льодяна оцтова кислота)[1].
Оцтова кислота необмежено змішується з водою, утворює значну кількість азеотропних сумішей із органічними розчинниками:
Інші фізичні характеристики:
- критичний тиск 5,79 МПа;
- критична температура 321,6 °С;
- питома теплоємність 2010 Дж/(кг·K) (при 17 °С);
- поверхневий натяг 27,8·10−3 Дж/м² (при 20 °С);
- корозійна активність 10%-го водного розчину по відношенню до Ст. 3 2,97 г/(год·м²) (при 20 °С).
Remove ads
Отримання
Узагальнити
Перспектива

Синтез розчинів оцтової кислоти (оцту) проводиться здебільшого методом ферментації, а для отримання чистої кислоти, у значних масштабах застосовуються методи карбонілювання метанолу, окиснення бутану й етаналю. Основним методом є отримання з метанолу.
Карбонілювання метанолу
Можливість отримання оцтової кислоти з метанолу була відкрита на німецькому концерні BASF у 1913 році:
У 1938 році співробітник BASF Вальтер Реппе продемонстрував ефективність використання як каталізаторів карбонілів металів VIIIB групи (група 9), зокрема, карбонілу кобальту [Co2(CO)8]. Перше повномасштабне виробництво із застосуванням кобальтового каталізатору було розгорнуто в 1960 році у Людвігсгафені, Німеччина.
Наприкінці 1960-х у компанії «Monsanto» розробили новий тип каталізаторів на основі родію, котрі мали значно вищу активність і селективність у порівнянні з кобальтовим: навіть за атмосферного тиску вихід кінцевого продукту становив 90–99 %. В 1986 році цей метод придбав «BP Chemicals» і передав його на вдосконалення компанії «Celanese».
На початку 1990-х «Monsanto» запатентувала використання нового, іридієвого, каталізатора. Його перевага полягала у більшій стабільності і меншій кількості рідких побічних продуктів. «BP» придбав права на цей патент і впровадив у виробництво під назвою метод Cativa (англ. Cativa process).
Метод BASF
У виробництві за методом BASF каталізатором виступає карбоніл кобальту [Co2(CO)8], який in situ отримують з йодиду кобальту(II):
У реакційній системі утворений карбоніл активують і надалі він перебуває у вигляді комплексу [Co(CO)4]-:
На першій стадії вихідний метанол взаємодіє із йодоводнем, котрий є супутнім продуктом синтезу карбонілу, з утворенням йодометану:
Йодометан реагує із карбонілом:
Згодом проводиться карбонілювання, що веде до складного ацилкарбонільного інтермедіату:
Під дією йодид-іонів комплекс розкладається, вивільняючи каталізатор та ацетилйодид, котрий гідролізується до оцтової кислоти:
Побічними продуктами в цьому циклі є метан, етаналь, етанол, пропіонова кислота, алкільні ацетати, 2-етилбутан-1-ол. На метан перетворюється близько 2,5 % метанолу, а на рідкі побічні продукти — 4,5 %. 10 % монооксиду вуглецю окиснюється до діоксиду:
Для реакції карбонілювання метанолу надзвичайно важливими є парціальні тиски вихідних речовин. Так, вихід кінцевого продукту сягає 70 % в залежності від подачі монооксиду вуглецю та 90 % в залежності від метанолу.
Метод Monsanto
За методом Monsanto каталізатором є дийододикарбонілродат [Rh(CO)2I2]-, котрий синтезують in situ з йодиду родію(III) у водному чи спиртовому середовищі.
Компанія «Celanese» вдосконалила цей метод, доповнивши його циклом оптимізації кислот, коли незначна додаткова кількість оцтової кислоти у формі ацетат-іонів подавалася на каталізатор і підвищувала його ефективність при низьких концентраціях вихідних сполук.
Синтез проводиться при температурі 150—200 °C і тиску 3,3—3,6 МПа.
Метод Cativa
Аналогічним до методу Monsanto є метод Cativa. Тут каталізатором виступає заряджений комплекс [Ir(CO)2I2]-.
У порівнянні з родієвим каталізатором, іридієвий має і переваги, і недоліки: так, окиснення іридію йодометаном відбувається у 150—200 разів швидше, але процес міграції метильної групи проходить у 105—106 разів повільніше, до того ж утворення побічного продукту метану для іридієвого каталізатора є вищим.
Окиснення етаналю
Прекурсором для отримання оцтової кислоти слугує етаналь, який синтезують окисненням етанолу в присутності солей срібла:
Окиснення альдегіду відбувається за радикальним механізмом із використанням ініціатора:
Реакція проходить через стадію утворення пероксоацетатного радикалу:
Отримана пероксоацетатна кислота реагує із ацетальдегідом із утворенням ацетальдегідперацетату, котрий за механізмом перегрупування Баєра — Віллігера розкладається на оцтову кислоту:
Побічним продуктом є метилформіат, котрий утворюється внаслідок міграції метильної групи.
Каталізаторами взаємодій є солі кобальту або марганцю. Вони також відіграють важливу роль у зменшенні кількості перацетат-радикалів у реакційній системі, тим самим запобігаючи утворенню вибухонебезпечних концентрацій:
Взаємодії за цим методом проводяться при температурі 60—80 °C і тиску 0,3—1,0 МПа. Перетворення альдегіду в ацетатну кислоту зазвичай відбувається із виходом понад 90 % та селективністю за кислотою понад 95 %.
Окиснення вуглеводнів
Оцтова кислота може бути отримана з бутану та легких фракцій нафти. Цей метод є один з найпоширеніших завдяки низькій вартості вуглеводневої сировини. У присутності металевих каталізаторів на кшталт кобальту, хрому, марганцю, бутан окиснюється повітрям:
Основними побічними продуктами є ацетальдегід і бутанон.
Ферментація
Деякі бактерії, зокрема, роди Acetobacter і Clostridium, виробляють кислоту в процесі своєї життєдіяльності. Використання людиною подібних ферментаційних процесів відоме ще з давніх-давен. Таким чином утворюється низькоконцентрована оцтова кислота, яка цілком задовольняє побутові потреби.
До ферментативного виробництва залучаються види бактерій Acetobacter aceti та штучно виведені Clostridium thermoaceticum. Для підживлення бактерій використовують цукровмісну сировину — глюкозу, ксилозу тощо:
Значною перевагою цього методу є повна екологічність виробництва.
Remove ads
Хімічні властивості
Узагальнити
Перспектива
У газовій фазі між молекулами кислоти виникають водневі зв'язки, тому вони перебувають переважно у димерній формі (також відомі тетрамери):
Окрім цього можливе утворення гідратованого димера: молекули поєднуються між собою лише одним зв'язком, а до вільних карбоксильної та гідроксильної груп приєднуються водневими зв'язками по одній молекулі води. Ступінь перетворення на димерні структури збільшується із підвищенням концентрації розчину та знижується з підвищенням температури.
Оцтова кислота є типовою карбоновою кислотою, вона бере участь у всіх реакціях, притаманних для цього ряду сполук.
У водному розчині кислота дисоціює та віддає іон H+ молекулам води, утворюючи структуру із двома рівними зв'язками C—O:
Проявляючи кислотні властивості, оцтова кислота взаємодіє із активними металами, оксидами і гідридами металів, металоорганічними сполуками, аміаком, утворюючи ряд солей — ацетатів.
Органічні ацетати є естерами — продуктами взаємодії кислоти зі спиртами:
Конденсацією кислоти із етеном синтезують вінілацетат — промислово важливу сполуку, мономер полівінілацетату:
При дії сильних зневоднюючих агентів (типу P2O5) утворюється оцтовий ангідрид. Аналогічним є результат за участі деяких агентів хлорування (тіонілхлориду, фосгену) — тоді синтез ангідриду проходить через стадію отримання ацетилхлориду.
Пропускаючи розігріту пару кислоти над каталізатором (оксидами марганцю, торію, цирконію), можна синтезувати ацетон (із виходом близько 80 %):
При нагріванні до 600 °C оцтова кислота дегідратується до кетену — етенону:
Remove ads
Токсичність
Перебуваючи у стані пари в повітрі, кислота пошкоджує очі, ніс та горло вже за концентрації понад 10 мг/м³. Серйозні наслідки спостерігаються при десятиденній повторюваній дії забрудненого кислотою повітря із вмістом до 26 мг/м³.
Низькоконцентровані розчини оцтової кислоти (близько 5 %) можуть подразнювати слизові оболонки. Концентрована кислота значною мірою пошкоджує шкіру при контакті: у випадку її потрапляння, необхідно промити уражене місце великою кількістю води або розчину харчової соди. При проковтуванні оцтової кислоти спостерігається біль у стравоході і роті, це може призвести до появи нудоти і проблем із диханням. У цьому випадку необхідно ополоснути ротову порожнину і звернутися до лікаря.
Токсичні дози при споживанні кислоти людиною достеменно не відомі. Напівлетальною дозою для пацюків є 3310 мг/кг, для кроликів — 1200 мг/кг. Споживання людиною 89—90 г чистої кислоти є вкрай небезпечним, а граничною кількістю для щоденного споживання є 2,1 г.
Remove ads
Застосування
Застосування оцтової кислоти досить різноманітне. У хімічній промисловості з неї виробляють пластичні маси, різні барвники, лікарські речовини, штучне волокно (ацетатний шовк), незаймисту кіноплівку та багато інших речовин. Солі оцтової кислоти — ацетати алюмінію, хрому, феруму — застосовують як протраву при фарбуванні тканин. Оцтова кислота має широке застосування і як розчинник.
У харчовій промисловості застосовується як консервант, регулятор кислотності та смакова приправа; в Європейській системі харчових добавок оцтова кислота має код E260.[7]
Кислота застосовується при солянокислотних обробленнях привибійних зон пласта як стабілізатор (з метою стабілізації продуктів реакції) від випадання складновилучуваних гелеподібних сполук заліза (осаду). Залежно від вмісту заліза в кислотному розчині (від 0,01 до 0,5 %) беруть 1–3 % оцтову кислоту. Для приготування робочих розчинів використовують як синтетичну кислоту, так і лісохімічну технічну очищену.
Remove ads
Див. також
Вікісховище має мультимедійні дані за темою: Оцтова кислота
Примітки
Джерела
Література
Посилання
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads