Топ питань
Часова шкала
Чат
Перспективи
Диференціальне рівняння з частинними похідними
З Вікіпедії, вільної енциклопедії
Remove ads
Диференціальне рівняння з частинними похідними (також відоме як рівняння математичної фізики) — диференціальне рівняння, що містить невідомі функції декількох змінних і їхні частинні похідні.
Вступ
Узагальнити
Перспектива
Розглянемо порівняно просте рівняння з частинними похідними:
З цього співвідношення випливає, що значення функції u(x,y) не залежить від x. Отже, загальний розв'язок рівняння є наступним:
де f — довільна функція змінної y. Аналогічне звичайне диференціальне рівняння має вигляд:
і його розв'язок
де c — довільна константа (незалежна від x). Ці два приклади показують, що загальний розв'язок звичайного диференціального рівняння містить довільні константи, а загальний розв'язок диференціального рівняння з частинними похідними містить довільні функції.
Remove ads
Визначення
Узагальнити
Перспектива
Диференціальним рівнянням з частинними похідними називається рівняння виду
де F — задана дійсна функція точки області D евклідового простору і дійсних змінних (u(x) - невідома функція) з невід'ємними цілочисловими індексами і принаймні одна з похідних функції F по змінній, що відповідає найвищому порядку частинних похідних, відмінна від нуля; натуральне число m називається порядком рівняння. Визначена у області D задання рівнянням функція u(x), неперервна разом з своїми частинними похідними, що входять в це рівняння, і що обертає його в тотожність, називається регулярним розв'язком. Разом з регулярними розв'язками в теорії диференціальних рівнянь з частинними похідними важливе значення мають розв'язки, що перестають бути регулярними поблизу ізольованих точок або многовидів особливого вигляду: до них належать зокрема, елементарні (фундаментальні) розв'язки. Вони дозволяють будувати широкі класи регулярних розв'язків (так званих потенціалів) і встановлювати їх структурні і якісні властивості.
У випадку неперервності частинних похідних F відносно змінних (тобто відносно частинних похідних найвищого порядку), важливе значення відіграє форма порядку m:
Дана форма називається характеристичною формою, що відповідає рівнянню з частинними похідними.
Remove ads
Лінійні рівняння
Узагальнити
Перспектива
Диференціальне рівняння з частинними похідними називається лінійним, якщо воно лінійне відносно невідомої функції і всіх її частинних похідних, тобто функція F з означення лінійна відносно аргументів
Класифікація рівнянь другого порядку
Лінійне рівняння 2-го порядку має вигляд:
де — задані в області D дійсні функції точки x.
Для лінійного рівняння 2-го порядку характеристична форма є квадратичною:
У кожній точці квадратична форма Q за допомогою невиродженого афінного перетворення змінних , може бути приведена до канонічного виду
де коефіцієнти приймають значення 1, -1, 0, причому число від'ємних коефіцієнтів (індекс інерції) і число нульових коефіцієнтів (дефект форми) є афінними інваріантами.
Коли всі або всі тобто коли форма Q відповідно додатно або від'ємно визначена (дефінітна), рівняння називається еліптичним в точці . Якщо один з коефіцієнтів від'ємний, а всі інші додатні (або навпаки), то рівняння називається гіперболічним в точці х. У випадку коли коефіцієнтів — додатні, а решта n - l від'ємні, рівняння називається ультрагіперболічним. Якщо ж хоча би один з цих коефіцієнтів (але не всі) рівний нулю то рівняння називається параболічним в точці х. Кажуть, що у області визначення D рівняння є рівнянням еліптичного, гіперболічного або параболічного типу, якщо воно відповідно еліптичне, гіперболічне або параболічне у кожній точці цієї області. Еліптичне в області D рівняння називається рівномірно еліптичним, якщо існують дійсні числа і k_1 однакового знаку такі, що
для всіх . Коли в різних частинах області D рівняння належить до різних типів, то воно називається рівнянням змішаного типу в цій області. У випадку лінійного рівняння від двох змінних тип рівняння в точці визначити досить просто. Лінійне рівняння другого порядку, залежне від двох змінних має вигляд:
де A, B, C - коефіцієнти, залежні від змінних x і y, а крапки позначають члени, залежні від x, y, u і частинних похідних першого порядку: і . Це рівняння схоже на рівняння конічного перетину:
Так само, як конічні перетини розділяються на еліпси, параболи і гіперболи, залежно від знаку дискримінанта , класифікуються рівняння другого порядку в заданій точці:
- — Гіперболічне рівняння
- — Еліптичне рівняння
- — Параболічне рівняння (тут передбачається, що в даній точці коефіцієнти A, B, C не рівні одночасно нулю).
У разі, коли всі коефіцієнти A, B, C — сталі, рівняння має один і той же тип в усіх точках площини змінних x і y. У випадку, якщо коефіцієнти A, B, C неперервно залежать від x і y, множини точок, в яких дане рівняння є гіперболічного (еліптичного) типу, утворює на площині відкриту область, що називається гіперболічною (еліптичною), а множина точок, в яких рівняння відноситься до параболічного типа, є замкнутою. Рівняння називається змішаним, якщо в деяких точках площини воно гіперболічне, а в деяких - еліптичне. В цьому випадку параболічні точки, як правило, утворюють лінію, звану лінією зміни типу або лінією виродження.
Remove ads
Існування і єдиність розв'язку
Узагальнити
Перспектива
Хоча відповідь на питання про існування і єдиність розв'язку звичайного диференціального рівняння має цілком вичерпну відповідь (теорема Пікара — Лінделефа), для рівняння з частинними похідними однозначної відповіді на це питання немає. Існує загальна теорема (теорема Коші-Ковалевськоі), яка стверджує, що задача Коші для будь-якого рівняння з частинними похідними, аналітичного щодо невідомих функцій і їх похідних має єдиний аналітичний розв'язок. Проте, існують приклади лінійних рівнянь з частинними похідними, що не мають розв'язку, коефіцієнти яких мають похідні всіх порядків. Навіть якщо розв'язок існує і є єдиним, він може мати небажані властивості.
Розглянемо послідовність задач Коші (залежну від n) для рівняння Лапласа:
де n — ціле число. Похідна від функції u по змінній y рівномірно прямує до 0 по x при зростанні n, проте розв'язком рівняння є
Розв'язок прямує до нескінченності, якщо nx не кратно для будь-якого ненульового значення y. задача Коші для рівняння Лапласа називається некоректною, оскільки немає неперервної залежності розв'язку від початкових даних.
Remove ads
Приклади
Узагальнити
Перспектива
Одновимірне рівняння теплопровідності
Рівняння, що описує розповсюдження тепла в однорідному стрижні має вигляд
де u(t,x) - температура, і — додатна константа, що описує швидкість розповсюдження тепла. Задача Коші ставиться таким чином:
,
де f(x) — довільна функція.
Рівняння коливання струни
Тут u(t,x) - зсув струни з положення рівноваги, або надмірний тиск повітря в трубі, або магнітуда електромагнітного поля в трубі, а c — швидкість розповсюдження хвилі. Для того, щоб сформулювати задачу Коші в початковий момент часу, слід задати зсув і швидкість струни в початковий момент часу:
Двовимірне рівняння Лапласа
Рівняння Лапласа для невідомої функції двох змінних має вигляд:
Його розв'язки називаються гармонічними функціями.
Зв'язок з аналітичними функціями
Дійсна і уявна частини будь-якої голоморфної функції комплексної змінної є спряжено гармонічними функціями: вони обидві задовольняють рівнянню Лапласа і їх градієнти ортогональні. Якщо f=u+iv, то умови Коші — Рімана стверджують наступне:
Додаючи і віднімаючи рівняння один з одного, одержуємо:
Також можна показати, що будь-яка гармонічна функція є дійсною частиною деякої аналітичної функції.
Граничні умови
Граничні умови ставляться таким чином: знайти функцію u, яка задовольняє рівнянню Лапласа у всіх внутрішніх точках області S, а на межі області — деякій умові. Залежно від виду умови розрізняють такі краєві задачі:
- — задача Діріхле
- — задача Неймана.
Рівняння Гінзбурга — Ландау
Рівняння Гінзбурга — Ландау використовуються для моделювання надпровідності. Рівняння має вигляд
Remove ads
Розв'язок рівнянь математичної фізики
Узагальнити
Перспектива
Існує два види методів розв'язування даного типа рівнянь:
- аналітичні, при яких результат виводиться різними математичними перетвореннями;
- чисельні, при яких одержаний результат відповідає дійсному із заданою точністю.
Аналітичний розв'язок
Рівняння коливань
Розглянемо задачу про коливання струни довжини . Вважатимемо, що на кінцях струни функція набуває значення нуль:
У початковий момент часу задамо початкові умови:
Представимо розв'язок у вигляді:
Після підстановки в початкове рівняння коливань, розділимо на добуток одержуємо:
Права частина цього рівняння залежить від , ліва — від , отже це рівняння може виконуватися лише тоді, коли обидві його частини рівні сталій величині, яку позначимо через :
Звідси знаходимо рівняння для :
Нетривіальні розв'язки цього рівняння за однорідних краєвих умов можливі тільки при і мають вигляд:
Розглянемо рівняння для знаходження :
Його розв'язок:
Отже, кожна функція вигляду
є рішенням хвильового рівняння.
Щоб задовольнити початкові умови, утворимо ряд:
Підстановка в початкові умови дає:
Останні формули є розкладом функцій і у ряд Фур'є на відрізку . Коефіцієнти розкладу обчислюються за формулами:
Чисельний розв'язок
Рівняння коливань струни
Цей спосіб рішення називається методом скінченних різниць. Цей метод заснований на визначенні похідної функції :
Якщо є функція , то частинна похідна буде наступна:
Оскільки ми використовуємо достатньо малий, знаки меж можна відкинути. Тоді одержимо такі вирази:
- ,
Тоді попередні вирази можна записати так: ,
Ці вирази називають правими диференціалами. Їх можна записати і по-іншому: , - це ліві диференціали.
Підсумувавши обидва вирази одержимо наступне:
з яких одержується:
Аналогічно можна одержати і диференціали другого порядку:
Рівняння коливань струни записується в такій формі: .
Додаткові умови задаються у вигляді:
, , , ,
- де і — позиції кінців (кріплень) струни в часі
- а і — початковий стан і швидкість струни з якої ми можемо отримати стан струни в наступний момент часу за формулою
- .
У обчисленнях використовують дискретизацію струни (розділяють її на однакові інтервали, довжина яких .
Значення функції для інших і можна обчислити з рівняння коливань струни:
Таким чином, ми одержали схему, за якою можна знайти значення функції для будь-яких і , використовуючи значення функції при попередніх і .
Цей метод дає наближену відповідь, ступінь точності . Для достатньо точних результатів необхідно використовувати інтервали і .
Remove ads
Див. також
Література
- Владимиров В. С. Уравнения математической физики. — М.: Наука, 1971. — 512 с.
- Гончаренко В. М. Основи теорії рівнянь з частинними похідними. — К., 1996
- Курант Р., Уравнения с частными производными, пер. с англ., М., 1964;
- Михлин С. Г. Линейные уравнения в частных производных. — М.:Высш. шк., 1977. — 432 с.
- Перестюк М. О., Маринець В. В. Теорія рівнянь математичної фізики. — К.: Либідь, 2002. — 336 с.
- Рівняння математичної фізики (практикум) : навч. посіб. / О. І. Бобик, І. О. Бобик, В. В. Литвин ; за наук. ред. В. В. Пасічника ; М-во освіти і науки України. – Л. : Новий Світ-2000, 2010. – 253 с. – (Комп'ютинг). – Бібліогр.: с. 252 (10 назв). – ISBN 978-966-418-122-5
- Тихонов А. Н., Самарский А. А., Уравнения математической физики, М., 1983;
- Evans, L. C. (1998), Partial Differential Equations, Providence: American Mathematical Society, ISBN 0-8218-0772-2 .
- John, F. (1982), Partial Differential Equations (4th ed.), New York: Springer-Verlag, ISBN 0-387-90609-6 .
- Polyanin, A. D. (2002), Handbook of Linear Partial Differential Equations for Engineers and Scientists, Boca Raton: Chapman & Hall/CRC Press, ISBN 1-58488-299-9 .
- Polyanin, A. D. & Zaitsev, V. F. (2004), Handbook of Nonlinear Partial Differential Equations, Boca Raton: Chapman & Hall/CRC Press, ISBN 1-58488-355-3 .
Remove ads
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads