Топ питань
Часова шкала
Чат
Перспективи

Дотичний простір

З Вікіпедії, вільної енциклопедії

Дотичний простір
Remove ads

Дотичний простір до гладкого многовиду в точці  — сукупність дотичних векторів у цій точці, які утворюють природну структуру векторного простору.

Thumb
Дотичний простір і дотичний вектор , подовж кривої , що проходить через точку

Дотичний простір до у точці зазвичай позначають або — коли очевидно, про який многовид йде мова — просто .

Сукупність дотичних просторів у всіх точках многовиду (разом із самим многовидом) утворюють векторне розшарування, яке називається дотичне розшарування. Відповідно, кожний дотичний простір є шар дотичного розшарування.

Також як у дотичного вектора, існує модифікація поняття дотичний простір — дотичний простір у точці підмноговиду.

У найпростішому випадку, коли многовид гладко вкладений у векторний простір (що можливо завжди, згідно з Теоремою Вітні про вкладення), кожен дотичний простір можна природно ототожнити з деяким афінним підпростором охоплюючого векторного простору.

Remove ads

Означення

Через диференціювання в точці

Нехай  гладкий многовид. Тоді дотичним простором назвемо простір диференціювань в точці . Тобто простір операторів які дають число для кожної гладкої функції , і володіють такими властивостями:

Легко бачити, що на множині всіх диференціювань в точці можна ввести структуру лінійного простору:

Через локальні координати

Нехай  — гладкий многовид розмірності n, і  — деяке координатне відображення в околі точки x. Позначимо множину гладких у точці x відображень з простору X у множину дійсних чисел. Дотичним вектором в точці називається відображення:

таке що існують дійсні числа з наступною властивістю. Для довільної функції

де  — координати простору

Визначення через криві

Нехай  — гладкий многовид розмірності n, і  — деяке координатне відображення в околі точки p. Нехай маємо дві криві такі що Тоді називаються еквівалентними, якщо Множина класів еквівалентності називається дотичним простором. Ототожнивши кожен клас еквівалентності з відповідним образом у цю множину можна перетворити у векторний простір.

Remove ads

Властивості

  • Дотичний простір -вимірного гладкого многовиду є -вимірним векторним простором.
  • Для обраної локальної карти , оператори являють собою базис , який називають голономним базисом.
Remove ads

Пов'язані означення

  • Контактним елементом до многовиду у деякій точці називається будь-яка гіперплощина дотичного простору в цій точці.

Див. також

Джерела

  • Григорій Михайлович Фіхтенгольц. Курс диференціального та інтегрального числення. — 2025. — 2391 с.(укр.)
  • Ляшко І. І., Боярчук О. К., Гай Я. Г., Головач Г. П. Математичний аналіз в прикладах і задачах. — 2025. — 1100+ с.(укр.)
  • Rudin, Walter(інші мови) (1986). Principles of Mathematical Analysis (PDF) (англ.) (вид. 3rd). New York: McGraw-Hill. с. 342.
  • Картан А. Дифференциальное исчисление. Дифференциальные формы. — М.: Мир, 1971.
  • Постников М. М. Лекции по геометрии. Семестр III. Гладкие многообразия. — М.: Наука, 1987.
  • Спивак М. Математический анализ на многообразиях, — М.: Мир. 1968.
Remove ads
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads