Топ питань
Часова шкала
Чат
Перспективи

Мультиплікативна група кільця лишків за модулем n

З Вікіпедії, вільної енциклопедії

Remove ads

В модульній арифметиці, множина класів рівності чисел, що є взаємно простими до модуля n утворюють групу над операцією множення відому як мультиплікативна група кільця лишків за модулем n (англ. Multiplicative group of integers modulo n, primitive residue classes modulo n). В теорії кілець, відгалуженні абстрактної алгебри, її описують як групу оборотних елементів кільця лишків за модулем n. (Оборотний елемент, тобто такий, що має обернений за модулем.)

Ця група фундаментальна в теорії чисел. Вона знайшла застосування в криптографії, факторизації цілих чисел і перевірці на простоту. Наприклад, через знаходження порядку (тобто розміру) групи, можна визначити чи просте n: n просте тоді і тільки тоді, якщо порядок становить n  1.

Remove ads

Аксіоми групи

Просто показати, що для множення класи рівності за модулем n, які взаємно прості до n, задовольняють аксіомам абелевої групи.

З a  b (mod n) випливає, що gcd(a, n) = gcd(b, n).

Тому що gcd(a, n) = 1 і gcd(b, n) = 1 призводить до gcd(ab, n) = 1, множина класів взаємно простих до n замкнена щодо множення.

Природне відображення з множини цілих чисел в класи рівності за модулем n, що переводить ціле число в його клас рівності за модулем n зберігає добуток. Це призводить до того, що клас, який містить 1 є єдиним нейтральним елементом щодо множення, асоціативний і комутативний закони також виконуються. Насправді це гомоморфізм кілець.

Для заданого a, gcd(a, n) = 1, знаходження x, що задовольняє ax ≡ 1 (mod n) це те саме, що розв'язання ax + ny = 1, що можна зробити через рівняння Безу. Знайдений x матиме властивість, що  gcd(x, n) = 1.

Remove ads

Форма запису

Кільце лишків за модулем n позначають   або    (тобто, кільце цілих за модулем ідеала nZ = (n), який складається з чисел кратних n), або як (хоча останню можна сплутати з p-адичними числами у випадку ). Залежно від автора цю групу оборотних елементів записують як         (німецькою Einheit = оборотний елемент) або щось інше в цьому ключі. Ця стаття використовує

Запис відповідає циклічній групі порядку n.

Remove ads

Структура

Узагальнити
Перспектива

n = 1

Будь-які два цілих числа рівні за модулем 1, тобто існує лише один клас рівності. Кожне ціле взаємно просте до 1. Отже єдиний клас рівності за модулем 1 взаємно простий із модулем, так тривіально. Отримуємо, що φ(1) = 1. Через те, що перший степінь будь-якого цілого числа рівний 1 за модулем 1, λ(1) також 1.

Через свою простоту, випадок рівності за модулем 1 зазвичай опускають. Наприклад, теорема « циклічна тоді і тільки тоді, коли φ(n) = λ(n)» неявно містить випадок n = 1, тоді як твердження теореми Ґауса « тоді і тоді, коли n = 2, 4, будь-який степінь непарного простого числа або двічі будь-який степінь простого числа,» явно виключає 1.

Степені 2

За модулем 2 є лише один клас взаємної рівності, 1, отже тривіальна група (з одним елементом).

За модулем 4 є два взаємно прості класи рівності, 1 і 3, отже циклічна група з двома елементами.

За модулем 8 є чотири взаємно прості класи, 1, 3, 5 і 7. Квадрат кожного з них дорівнює 1, отже 4-група Клейна.

За модулем 16, присутні вісім взаємно простих класів 1, 3, 5, 7, 9, 11, 13 і 15. — підгрупа 2-кручення (тобто квадрат кожного елемента дорівнює 1), отже не циклічна. Степені числа 3 утворюють — підгрупа порядку 4, як і степені 5,   Таким чином

Властивості, що показали приклади з 8 і 16 зберігаються[1] для вищих степенів 2k, k > 2: — підгрупа 2-кручення (тому не циклічна) і степені 3 це підгрупи порядку 2k 2, отже

Степені непарних простих

Для степенів непарних простих чисел pk група циклічна:[2]

Складені числа

Китайська теорема про залишки стверджує, що [3] якщо тоді кільце є прямим добутком кілець відповідно до степенів простих множників числа:

Подібно, група оборотних елементів є прямим добутком відповідно до степеня простого множника:

Remove ads

Властивості

Узагальнити
Перспектива

Порядок

Порядок отримуємо через функцію Ейлера: Це добуток порядків циклічних груп у прямому добутку.

Експонента

Експонента отримується функцією Кармайкла найменше спільне кратне порядків циклічних груп. Тобто, для заданого n, для будь-якого a взаємно простого до n і — найменше таке число.

Породжувачі

циклічна тоді і тільки тоді, якщо Це випадок коли n це 2, 4, pk або 2pk, де p непарне просте і k > 0. для всіх інших значень n (окрім 1) група не циклічна.[4][5] Єдиний породжувач в циклічному випадку називається первісний корінь за модулем n.

З того, що всі n ≤ 7 циклічні, інакше можна це сказати так: Якщо n < 8 тоді має первісний корінь. Якщо n ≥ 8 тоді має первіісний корінь якщо тільки n не ділиться на 4 або на два відмінних простих числа.

В загальному випадку існує лише один породжувач для кожного циклічного прямого множника.

Remove ads

Приклади

Ця таблиця показує циклічну декомпозицію і породжуючу множину для малих значень n. Породжуюча множина не єдина; наприклад для модуля 16 підходять і {1, 3}, і {1, 5}. Породжувачі вказані в порядку прямих множників (англ. direct factor).

Наприклад, візьмемо n = 20. значить, що порядок 8 (тобто із чисел менших від 20, лише 8 є взаємно прості з ним); , отже четвертий степінь будь-якого взаємно простого до 20 числа ≡ 1 (mod 20); і по породжувачах, 19 має порядок 2, 3 — 4, і кожен елемент групи має форму 19a × 3b, де a — 0 або 1 і b — 0, 1, 2 або 3.

Степенями 19 є {±1}, а степені 3 — {3, 9, 7, 1}. Степені 3 помножені на ±1 складають всі числа менші 20 і взаємно прості з ним. Факт того, що порядком 19 є 2 і порядок 3 — 4 тягне за собою те, що кожен член ≡ 1 (mod 20).

Більше інформації , ...
Remove ads

Примітки

Посилання

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads