Топ питань
Часова шкала
Чат
Перспективи

Симетричний граф

З Вікіпедії, вільної енциклопедії

Симетричний граф
Remove ads

В теорії графів, граф G є симетричним (або дуго-транзитивним) якщо, для будь-яких пар суміжних вершин u1v1 і u2v2 графа G, існує автоморфізм

f : V(G) → V(G)
Thumb
Граф Петерсена — (кубічний) симетричний граф. Будь-яка пара суміжних вершин може бути відображена на іншу через автоморфізм, бо будь-яке 5-вершинне кільце може бути відображене в будь-яке інше

такий, що

f(u1) = u2 and f(v1) = v2.[1]

Інакше кажучи, граф симетричний, якщо група його автоморфізмів діє транзитивно над впорядкованими парами суміжних вершин (тобто, над орієнтованими ребрами).[2] Такий граф іноді називають 1-дуго-транзитивний[2] або прапорцево-транзитивний.[3]

За визначенням (ігноруючи u1 і u2), симетричний граф без ізольованих вершин має також бути вершинно-транзитивним.[1] Завдяки визначенню через відображення одного ребра на інше, симетричний граф має також бути реберно-транзитивним. Однак, реберно-транзитивний граф не має бути симетричним, бо ab можуть відбиватись в cd, але не в dc. Наприклад, напівсиметричний граф є реберно-транзитивним і регулярним, але не вершинно-транзитивним.

Коротка інформація

Таким чином, кожний зв'язний симетричний граф має бути і вершинно-транзитивним, і реберно-транзитивним, зворотне твердження теж правильне для графів непарних степенів.[3] Однак, для парних степенів, існують зв'язні вершинно-транзитивні і реберно-транзитивні, але не симетричні графи.[4] Такі графи називаються напівтранзитивними[en].[5] Найменший зв'язний напівтранзитивний граф це граф Хольта[en], зі степенем 4 і 27 вершинами.[1][6] Деякі автори використовують термін «симетричний граф» для позначення графів, що вершинно-транзитивні і реберно-транзитивні, радше ніж дуго-транзитивні. Таке визначення охоплює напівтранзитивні графи, які виключені визначенням поданим вище.

У відстанево-транзитивного графа замість розглядання пар суміжних вершин (тобто вершин на відстані 1), визначення розглядає дві пари вершин, кожна з однаковою відстанню між вершинами. Такий граф автоматично симетричний за визначенням.[1]

Визначимо t-дугу як послідовність з t+1 вершин таких, що будь-які дві послідовні вершини суміжні, з допустимою відстанню між вершинами, що повторюються, більшою за два кроки. T-транзитивний граф це такий граф, що група автоморфізмів діє транзитивно на t-дугах, але не на (t+1)-дугах. Через те, що 1-дуги це просто ребра, кожний симетричний граф степені 3 або більше має бути t-транзитивний для деякого t, і значення t можна використати для подальшої класифікації симетричних графів. Куб є 2-транзитивним, наприклад.[1]

Remove ads

Приклади

Узагальнити
Перспектива

Поєднання умови симетричності з накладанням обмеження кубічності на граф (тобто всі вершини мають степінь 3) породжує дуже сильну умову, і такі графи становляться досить рідкісними, щоб бути занесеними в список. Перепис Фостера (англ. Foster census) і його розширення подають такі списки.[7] Перепис Фостера був початий в 1930 році Рональдом Фостером коли він працював у Bell Labs,[8] і в 1988 (коли Фостеру було 92[1]) складений на той момент його перелік (список всіх кубічних симетричних графів до 512 вершин) був опублікованим у формі книги.[9] Перші тринадцять елементів цього списку це кубічні симетричні графи до 30 вершин[10][11] (десять з них також відстанево-транзитивні; винятки позначені):

Більше інформації Вершин, Діаметр ...

Іншими добре відомими кубічними симетричними графами є граф Діка, граф Фостера і граф БіґґсаСміта. Десять відстанево-транзитивних графів, які перелічені вище, разом із графом Фостера і графом Біґґса—Сміта, є єдиними кубічними відстанево-транзитивними графами.

Некубічні симетричні графи включають циклічні графи (степеня 2), повні графи (степеня 4 або вище, коли вони мають 5 або більше вершин), графи гіперкуби (степеня 4 або вище, коли вони мають 16 або більше вершин), і графи утворені вершинами і ребрами октаедра, ікосаедра, кубооктаедра та ікосододекаедра. Граф Радо є прикладом симетричного графа з нескінченною кількістю вершин і нескінченним степенем.

Remove ads

Примітки

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads