Топ питань
Часова шкала
Чат
Перспективи

Строфоїда

З Вікіпедії, вільної енциклопедії

Строфоїда
Remove ads

Строфоїда (від грец. στροφή — поворот) алгебрична крива 3-го порядку. Будується таким чином (див. Рис. 1):

Thumb
Рис. 1
Thumb
Рис. 2

У декартовій системі координат, де вісь абсцис направлена ​​за OB, а вісь ординат за OD, задана фіксована точка A на осі OX. Через точку А проводиться довільна пряма AL, яка перетинає вісь ординат у точці P. Від точки P, на відстані рівній OP, в обидва боки вздовж прямої AL розташовані точки M1 і M2. Геометричне місце точок M1 і M2 утворюють строфоїду.

У прямокутній системі координат будується пряма строфоїда або просто строфоїда, яка зображена на Рис.1. У косокутній системі координат будується коса строфоїда — Рис.2.

Remove ads

Рівняння

Узагальнити
Перспектива

Рівняння строфоїди в декартовій системі координат, де O початок координат, вісь абсцис направлена за променем OB, вісь ординат за променем OD, кут (для прямокутної системи координат ), записується так:

.

Рівняння прямої строфоїди:

.

Рівняння строфоїди в полярній системі координат:

.

Параметричне рівняння строфоїди:

, де
.

Точка B розміщена від центру координат O на відстані, рівній a = OA. Пряма UV, проведена через точку B паралельно до осі ординат слугує асимптотою для обох гілок прямої строфоїди. Для косої строфоїди, пряма UV слугує асимптотою для нижньої гілки і дотичною в точці S, причому SB = SA.

У точці O існують дві дотичні, які взаємно перпендикулярні, як для прямої, так і для косої строфоїди.

Remove ads

Див. також

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads