Сфери́чні гармо́ніки — набір ортонормованих функцій двох кутових змінних
і
, які складають повний базис функцій сферичного кута.
Візуальне зображення перших декількох сферичних гармонік. Червоний колір вказує на додатність функції, зелений на від'ємність.
Коротка інформація Формула, Позначення у формулі ...
Сферичні гармоніки |
 |
Формула |
|
Позначення у формулі |
, і |
Підтримується Вікіпроєктом |
Вікіпедія:Проєкт:Математика |
Сферичні гармоніки у Вікісховищі |
Закрити
Сферичні гармоніки позначаються
, де l = 0,1,2…, а m пробігає
значення від -l до l.
,
де
- приєднані поліноми Лежандра.
Сферичні гармоніки є власними функціями оператора кутового моменту.
Множник в означенні сферичних гармонік вибирається з умови нормування
,
де інтегрування проводиться по повному сферичному куту, а
- символ Кронекера.