Топ питань
Часова шкала
Чат
Перспективи
Теорема Брауера про інваріантність областей
З Вікіпедії, вільної енциклопедії
Remove ads
Теорема про інваріантність областей стверджує, що образ відкритої підмножини евклідового простору при неперервному ін'єктивному відображенні у цей же евклідів простір є відкритою множиною. Теорема була доведена Лейтзеном Брауером. [1]
Формулювання
Нехай — відкрита підмножина у і — ін'єктивне неперервне відображення. Тоді образ є відкритою підмножиною у , і є гомеоморфізмом між і тобто є відкритим і замкнутим відображенням.

Зауваження
- Як видно на картинці, твердження теореми не є вірним для відображення між евклідовими просторами різної розмірності
- Також твердження є невірним для просторів нескінченної розмірності. Наприклад, відображення правого зсуву
- гільбертового простору у себе є неперервним і ін'єктивним, але не є відкритим.
Remove ads
Доведення
Узагальнити
Перспектива
Дане доведення використовує властивості відкритих і замкнутих відображень, а також теорему Брауера — Жордана, що є узагальненням теореми Жордана про криві.
Для доведення теореми достатньо довести, що для будь-якої відкритої множини образ є відкритою підмножиною у . Більш того достатньо довести твердження для елементів деякої бази топології, наприклад відкритих куль виду радіуса із центром , що із своїм замиканням належать U.
є компактною множиною і є ін'єктивним неперервним відображенням із компактного простору у простір , що є гаусдорфовим. Як неперервне відображення із компактного простору в гаусдорфовий є замкнутим відображенням (замкнута підмножина компактного простору є компактною, її образ при неперервному відображенні теж буде компактною підмножиною, а компактна підмножина гаусдорфового простору є замкнутою; тобто образ замкнутої множини при таких умовах теж э замкнутою множиною). Оскільки є ін'єктивним, то він також є гомеоморфізмом. Тому образ є гомеоморфним сфері і згідно з теоремою Брауера — Жордана доповнення є об'єднанням двох компонент зв'язності перша з яких є обмежена, а друга — необмежена.
Множина (де є замиканням ) є компактною, як образ компактної множини при неперервному відображенні. Тому є обмеженою множиною і є необмеженою, зв'язаною областю. Звідси або еквівалентно
Множина є зв'язаною, тому і є зв'язаною і тому міститься в одній із компонент зв'язності . Оскільки то цією компонентою є і тоді також і остаточно Тобто образом довільної відкритої множини із вказаної бази є відкрита множина і відображення є відкритим.
Remove ads
Наслідки
- З теореми випливає, що Евклідові простори різної розмірності не є гомеоморфними.
- За допомогою теореми можна довести багато тверджень про існування опуклих многогранників, зокрема існування опуклого многогранника з даною розгорткою [2]
Узагальнення
- Теорема про інваріантності області допускає пряме узагальнення на відображення між многовидами однакової розмірності.
- Існують також узагальнення для деяких видів неперервних відображень з банахових просторів у себе. [3]
Примітки
Див. також
Література
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads