Топ питань
Часова шкала
Чат
Перспективи
Теорема Діріхле про арифметичні прогресії
З Вікіпедії, вільної енциклопедії
Remove ads
Теорема Діріхле про прості числа в арифметичній прогресії — важлива теорема у аналітичній теорії чисел, вперше доведена німецьким математиком Йоганном Петером Густавом Лежен-Діріхле.
Твердження теореми
Нехай — цілі числа, і (тобто є взаємно простими).
Тоді існує нескінченна кількість простих чисел таких, що .
З цього випливає, що кожна нескінченна арифметична прогресія, перший член і різниця якої — натуральні взаємно прості числа, містить нескінченну кількість простих чисел.
Remove ads
Історія доведень
Теорема в даному формулюванні була доведена Діріхле аналітичними засобами у 1837 році. Надалі були знайдені доведення теореми елементарними методами[1]. Різні такі доведення знайшли Мертенс, Сельберг і Цассенхаус.
Приклади
Узагальнити
Перспектива
Нижче подані приклади кількох арифметичних прогресій і найменших простих чисел у цих прогресіях
Remove ads
Варіації
Узагальнити
Перспектива
При розгляді простих досить часто виявляється, що їх множина має багато властивостей множини всіх простих чисел. Існує чимало теорем і гіпотез, що розглядають тільки прості числа з певного класу лишків або співвідношення множин простих чисел з різних класів лишків.
Наприклад, крім основного твердження теореми Діріхле довів у 1839 році, що для будь-яких фіксованих натуральних взаємно простих чисел і :
де сума є по всіх простих числах з умовою , а — функція Ейлера.
Це співвідношення можна інтерпретувати як закон рівномірного розподілу простих чисел за класами лишків , оскільки
якщо сума є по всіх простих числах.
Відомо, що для будь-яких взаємно простих чисел і ряд , де сума є по простих є розбіжним.
Remove ads
Примітки
Див. також
Література
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads