Топ питань
Часова шкала
Чат
Перспективи
Міра множини
З Вікіпедії, вільної енциклопедії
Remove ads
Міра множини — спільна назва різних типів узагальнень понять евклідової довжини, площі плоских фігур та -вимірного об'єму для загальніших просторів.

Якщо зворотне не вказане явно, то зазвичай йдеться про зліченно-адитивну міру.
Поняття міри виникло в теорії функції дійсної змінної, а звідти перейшло до теорії ймовірностей, теорії динамічних систем, функціонального аналізу та багато інших областей математики.
Remove ads
Визначення
Узагальнити
Перспектива
Теорія міри та інтеграла Лебега була розроблена на початку XX ст. у зв'язку з потребами аналізу та теорії функцій. Абстрактний варіант теорії є математичною основою ряду теоретичних і прикладних розділів сучасної математики.
Скінчено-адитивна міра
Нехай задано простір з виділеним класом підмножин , замкненим щодо скінчених перетинів та об'єднань. Функція називається скінчено-адитивною мірою, якщо вона задовольняє наступним умовам:
- ;
- Якщо — скінчене сімейство попарно неперетинних множин із , тобто , то
.
Альтернативне визначення
Функція множини називається мірою, якщо:
- область визначення функції є напівкільце множин.
- значення
- — адитивна, тобто, для довільного скінченого розкладу ,
- буде виконуватись рівність
Система множин називається напівкільцем, якщо вона містить порожню множину, замкнена у відношенні до утворення перетинів, і якщо з приналежності до множини та випливає можливість представлення множини у вигляді об'єднання , де — попарно неперетинаючі множини з , перша з яких є задана множина .
Злічено-адитивна міра
Нехай задано простір з виділеною σ-алгеброю . Функція називається злічено-адитивною (або σ-адитивною) мірою, якщо вона задовольняє наступним вимогам:
- ;
- (σ-адитивність) Якщо — злічене сімейство множин, що попарно не перетинаються з , тобто , то
- .
Продовження міри
Міра називається продовженням міри , якщо і для кожної виконується рівність:
При цьому, для кожної міри , заданої на деякому напівкільці існує єдине продовження , що має як область визначення кільце (тобто, мінімальне кільце над ).
Примітки
- Довільна злічено-адитивна міра є скінчено-адитивною, але не навпаки.
- Якщо міра всього простору скінчена, тобто , то така міра називається скінченою. В протилежному випадку міра нескінчена.
- На прямій та двовимірній площині існує нескінчена кількість продовжень міри Лебега з σ-алгебри, породжуваної відкритими підмножинами, на множину всіх множин, що зберігає скінчену адитивність міри. Для жодного з нетривіальних евклідових просторів не існує будь-якого злічено-адитивного розширення міри Лебега на множину всіх його підмножин.
Remove ads
Приклади
- Міра Жордана — приклад скінчено-адитивної міри;
- Міра Лебега — приклад нескінченої міри;
- Імовірність — приклад скінченої міри.
Див. також
Джерела
- Вулих Б. З. (1973). Краткий курс теории функций вещественной переменной (введение в теорию интеграла). М.: Наука. с. 352.
- Колмогоров А. Н., Фомин С. В. Элементы теории функций и функционального анализа. — 4-е изд. — Москва : Наука, 1976. — 544 с. — ISBN 5-9221-0266-4.(рос.)
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads