热门问题
时间线
聊天
视角
二面体
来自维基百科,自由的百科全书
Remove ads
在几何学中,二面体是指由2个面组成的多面体,但由于三维空间中的多面体至少要具有4个面,因此少于四个面的多面体只能是退化的,换句话说,小于4个面的多面体无法具有非零的体积。二面体中最常见的就是多边形二面体,即由两个全等的平面图型封闭出的零体积空间所形成的退化多面体。最简单的二面体是一种球面镶嵌:一角形二面体,它的对偶是一面形。另外二面体也可以以环形多面体或正则地区图的形式存在。
二面体中不存在任何柱体,因为如果柱体要仅有两个面,代表其不存在侧面,而这样的立体就不是柱体了。
常见的二面体
任何平面图形都可以视为一个二面体,并且属于二面体群。
一个二面形,是一种由二个镶嵌在球体上的球弓形组成的多面形,施莱夫利符号中利用{2,2}来表示,该符号表达了二面形的结构——每个顶点都是2个二角形的公共顶点。

一角形二面体,又称为双一角形(dimonogon[2])是一种退化的多边形二面体,由2个一角形组成,这个几何结构只有1个顶点,该顶点为2个一角形的公共顶点,在施莱夫利符号中用{1,2}表示,其具有2个面、1条边和1个顶点,对偶多面体是一个一面体:一面形。[2]
在球面几何学中,一角形二面体是一个球面上的一个圆上任一顶点。这形成了一个二面体,施莱夫利符号中利用{1,2}来表示,与的两个半球形一角形面,共用一个360°的边和一个顶点。它的对偶是一面形,施莱夫利符号中利用{2,1}来表示,具有一个二角形面(一个完整的360°弓形),一个180°的边缘,和两个顶点,因此属于一面体。
![]() 作为正则地区图的一角形二面体。两个面分别以蓝色和黄色表示 |
![]() 截角的一角形二面体,红色为截角的截面,所形成的立体为三面形 |

一角锥是指底面为一角形的锥体,由于其底面为一角形,因此在欧几里得空间中,其已经退化无法拥有体积。在球面几何学中,其可以作为球面镶嵌,此时的一角锥由1个球面一角形和1个球面三角形构成。这种一角锥共有2个面、2条边和2个顶点。一角锥的对偶多面体同样是一角锥,因此是一种自身对偶的多面体。
双一角锥是以一角形为底的双锥体,为一角柱的对偶多面体。由于其以一角形为底,因此在欧几里得空间中,其已经退化无法拥有体积。在球面几何学中,其可以作为球面镶嵌,这种双一角锥由2个面、3条边和3个顶点组成,其两个面都是三角形,但拓扑结构与三角形二面体不同,其中的两个顶点为对跖点,剩下的一个顶点位于赤道面上连结与对跖点相连的两条边。双一角锥的对偶多面体为一角柱。

部分的环形多面体也是二面体,例如{4,4}1,1是一种环形二面体[5],为环面上的两个四边形面共用2个顶点和4条边;以及{3,6}1,0也是一种环面二面体,为环面上两个三角形共用一个顶点和三条边。
部分的正则地区图由两个面组成,可以视为二面体的一种,例如亏格为2的二面正则地区图有S2:{8,4}、S2:{6,6}和S2:{5,10}。其中S2:{8,4}为由两个八边形面共用4个顶点和8条边[6],并且八边形在顶点周围自我重复相邻两次,也就是顶点周围围绕着4个八边形,且对应的皮特里多边形为八边形,因此其在施莱夫利符号中可以用{8,4}8来表示[7];S2:{6,6}为由两个六边形共用两个顶点和6条边[8],并且六边形在顶点周围自我重复相邻三次,也就是其顶点周围围绕着六个六边形,且对应的皮特里多边形为二角形,因此在施莱夫利符号中可以用{6,6}2来表示[7];S2:{5,10}为由两个五边形共用一个顶点和5条边[9],并且五边形在顶点周围自我重复相邻五次,也就是其顶点周围围绕着10个五边形,且对应的皮特里多边形为二角形,因此在施莱夫利符号中可以用{5,10}2来表示[7]。
在不严谨的情况下,圆锥也能算是一种二面体,因为它可以看做是只有两个面的几何体,由一曲面(侧面)和一圆形平面(底面)所组成。
Remove ads
参见
参考文献
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads