热门问题
时间线
聊天
视角

十一面体

来自维基百科,自由的百科全书

十一面體
Remove ads

几何学中,十一面体(英语:Hendecahedron)是指具有十一多面体[1]。没有任何十一面体是正十一面体,也就是说找不到面由正多边形组成且每个面全等、每个角相等的十一面体。

事实速览 部分的十一面体 ...

命名

十一面体的英文是Hendecahedron,其命名方式为Hen-代表一,deca代表十,然后结合多面体字尾-hedron,就得到十一面体Hendecahedron[2]

常见的十一面体

在所有凸十一面体中,包含镜射像共有440,564种拓朴结构明显差异的凸十一面体[3][4]。拓朴结构有明显差异意味着两种多面体无法透过移动顶点位置、扭曲或伸缩来相互变换的多面体,例如五角锥柱和九角柱无论如何变形都无法互相变换,因此拓朴结构不同,但九角柱和九角锥台可以透过伸缩其中一个九边形面来彼此互换,因此三角柱和三角锥台在拓朴上并无明显差异。

常见的十一面体有锥体柱体、部分的约翰逊多面体半正多面体,此处的半正多面体并非阿基米德立体,而是正九角柱。

其他十一面体还有九角柱、十角锥、正五角锥反角柱的对偶、双对称十一面体等多面体,其中双对称十一面体可以密铺空间。[5]

三角丸塔

Thumb
正三角丸塔

三角丸塔是指以三角形为底的丸塔,是一种十一面体,由1个三角形顶面、1个六边形底面、3个五边形侧面和6个三角形侧面组成,共有11个面、21条边和12个顶点,其中顶面的三角形与底面的六边形互相平行,侧面的三角形与五边形交错地围绕轴分布在周围。

以正三角形为底的三角丸塔称为正三角丸塔,其仅有顶面和底面为正多边形,分别为顶面的正三边形和底面的正六边形,侧面可能可以存在正三角形或存在正五边形,但有正三角形面时,五边形最多仅能是等边不等角的非正五边形;有正五边形面时,三角形会出现等腰三角形,故不属于约翰逊多面体。唯一属于约翰逊多面体的丸塔仅有正五角丸塔[6]

正三角丸塔的对称群为C3v英语Dihedral symmetry in three dimensions群,阶数为6阶。

截半三角柱

Thumb
截半三角柱的旋转动画

在几何学中,截半三角柱是指经过截半变换后的三角柱,是一种十一面体[7],其侧面是正方形、底面是正三角形,另外还有6个等腰三角形面。

截半三角柱可由三角柱将边的中点当作新的顶点,旧的顶点消失,来构造,换句话说,即是用三角柱由一条棱斩到另一条棱的中点(即斩去三角柱的顶点,但不是截角)而成。

其具有D3h二面体群的对称性。

约翰逊多面体

在十一面体中,有3个是约翰逊多面体,它们分别为:正五角锥柱二侧锥三角柱侧锥六角柱

更多信息 名称, 种类 ...

九角柱

Thumb
正九角柱

九角柱是一种底面为九边形的柱体,是十一面体的一种,由11个面、27条边和18个顶点组成[11],对偶多面体为双九角锥[12]。正九角柱代表每个面都是正多边形的九角柱,其每个顶点都是2个正方形和1个九边形的公共顶点,因此具有每个角等角的性质,可以归类为半正十一面体。而顶点都是2个正方形和1个九边形的公共顶点的这种顶角,在顶点图中以表示。正九角柱在施莱夫利符号中可以利用{9}×{} 或 t{2, 9}来表示;在考克斯特—迪肯符号英语Coxeter-Dynkin diagram中可以利用node_1 9 node 2 node_1 来表示;在威佐夫符号英语Wythoff symbol中可以利用2 9 | 2来表示;在康威多面体表示法中可以利用P9来表示。若一个正九角柱底边的边长为、高为,则其体积和表面积[13]

Remove ads

十角锥

十角锥是一种底面为十边形的锥体,是十一面体的一种,由11个面、20条边和11个顶点组成[14],其对偶多面体是自己本身[15]。正十角锥是一种底面为正十边形的十角锥。若一个正十角锥底边的边长为、高为,则其体积和表面积[15]

Remove ads

十一面体列表

更多信息 名称, 种类 ...
Remove ads

在化学中

化学中,将十八面体硼烷离子([B11H11]2−)的全部去掉后,可以得到一个结构,它是十八面体,再将每个原子做垂直于重心到硼原子的面,可构造成新的多面体,即为十八面体硼烷结构的对偶多面体,也是十一面体之一。[16]

双对称十一面体

双对称十一面体(Bisymmetric Hendecahedron)是十一面体的一种多面体

帕雷托阿基米德立体,只有少数可以密铺于空间,也就是说堆砌在一起,不留空隙,以填补空间。Guy Inchbald描述了一个有趣的多面体,可以以令人惊讶的方式利用11面体完成空间的密铺。[5][17][18]

更多信息 图像, 旋转动画 ...

曾有人提出一个十一面体[5],它的面数和顶点数是相同的[19],经过扭曲后,会得到不同的特性。最对称的自身对偶十一面体是双对称十一面体[20],它之所以会称为双对称是因为它有两个对称面[19]

参考文献

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads