热门问题
时间线
聊天
视角
四阶七边形镶嵌
来自维基百科,自由的百科全书
Remove ads
在几何学中,四阶七边形镶嵌是由七边形组成的双曲面正镶嵌图,在施莱夫利符号中用{7,4}表示。四阶七边形镶嵌每个顶点皆由四个七边形共用,且七边形不重叠,这样一来,该点处的内角和将超过360度,因此无法存于平面上,但可以在双曲面上作出。
对称性
这个镶嵌代表七次反射的双曲万花筒,这些镜射线皆位于正七边形的边缘。这种由七个二阶交叉反射的对称性在轨形符号被称为*2222222。在考斯特表示法可表示为[1+,7,1+,4], ,从三个的镜射线当中移除两条穿过七边形中心的镜射线。
该镶嵌有一种表面涂色,即将七边形交错涂上不同颜色。该表面涂色的图形可以用t1{7,7}的施莱夫利符号表示,是一种半正镶嵌,称为截半七阶七边形镶嵌
相关多面体与镶嵌
![]() {7,3} ![]() ![]() ![]() ![]() ![]() |
![]() {7,4} ![]() ![]() ![]() ![]() ![]() |
![]() {7,5} ![]() ![]() ![]() ![]() ![]() |
![]() {7,6} ![]() ![]() ![]() ![]() ![]() |
![]() {7,7} ![]() ![]() ![]() ![]() ![]() |
该镶嵌在拓朴学中也和每个顶点有着四个面的多面体及镶嵌相关,由正八面体开始, 施莱夫利符号皆为{n,4},而考斯特符号为,从n到无穷。
Remove ads
参见
参考资料
- John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
- Chapter 10: Regular honeycombs in hyperbolic space. The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.
外部链接
- 埃里克·韦斯坦因. Hyperbolic tiling. MathWorld.
- 埃里克·韦斯坦因. Poincaré hyperbolic disk. MathWorld.
- Hyperbolic and Spherical Tiling Gallery(页面存档备份,存于互联网档案馆)
- KaleidoTile 3: Educational software to create spherical, planar and hyperbolic tilings (页面存档备份,存于互联网档案馆)
- Hyperbolic Planar Tessellations, Don Hatch(页面存档备份,存于互联网档案馆)
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads