热门问题
时间线
聊天
视角

克拉梅尔猜想

来自维基百科,自由的百科全书

Remove ads

数学上的克拉梅尔猜想(Cramér's conjecture)是瑞典数学家哈拉尔德·克拉梅尔在1937年提出的关于素数间隙的猜想。[1]该猜想是说:

这里代表第素数。该猜想到现在仍未证出或被否证。

Remove ads

关于素数间隙的条件结果

克拉梅尔也提出另一个较弱的关于素数间隙的猜想,指出在黎曼猜想成立的状况下,有

[1]

目前这方面最好的无条件结果是

而这点由R·C·贝克(R. C. Baker)、格林·哈曼英语Glyn Harman平茨·亚诺什匈牙利语Pintz János三人证出。[2]

另一方面,E·韦斯钦蒂乌斯(E. Westzynthius)于1931年证明素数间隙成长速度快过对数,也就是说,[3]

罗伯特·亚历山大·兰金英语Robert Alexander Rankin改进了他的结果,[4]并证明道

埃尔德什·帕尔猜想表示上式的左侧趋近于无限,而这点于2014年由凯文·福特英语Kevin Ford (mathematician)本·格林英语Ben Green (mathematician)谢尔盖·科尼亚金英语Sergei Konyagin陶哲轩四人组。[5]以及詹姆斯·梅纳德分别证出。[6]这两组人马在该年稍晚将该结果以因子进行改进。[7]

Remove ads

探索性论证

克拉梅尔猜想是基于本质上探索性概率模型英语Probabilistic number theory之上的,在其中一个大小为x的数是素数的概率是。而该结果又称作“克拉梅尔随机模型”(Cramér random model)或“克拉梅尔素数模型”(Cramér model of the primes)。[8]

根据克拉梅尔随机模型,以下事件的概率为一[1]

然而,安德鲁·格兰维尔英语Andrew Granville指出,[9]根据迈尔定理,克拉梅尔随机模型不能适切地描述素数在短区间上的分布,而在考虑可除性后,修正版克拉梅尔模型指向A125313),其中欧拉-马斯刻若尼常数。平茨·亚诺什则认为该比值的上极限可能发散至无限;[10]

类似地,伦纳德·阿德曼和凯文·麦柯利(Kevin McCurley)写道:

“由于H. Maier关于相邻素数间隙的工作之故,学界对克拉梅尔猜想的确实公式起了疑问…(中略)因此很有可能对于任意的常数而言,总存在一个常数,使得有一个素数。”[11]

类似地,罗宾·维瑟(Robin Visser)写道:

“事实上,由于格兰维尔的工作之故,现在学界普遍相信克拉梅尔猜想是错的。实际上也确实有迈尔定理等关于短区间的定理,和克拉梅尔模型难以兼容。”[12]
Remove ads

相关猜想和探索

Thumb
素数间隙函数

丹尼尔·尚克斯英语Daniel Shanks猜想表示对素数间隙而言,下列比克拉梅尔猜想来得强的非病态公式成立:[13]

J·H·卡德韦尔(J.H. Cadwell)[14]则提出下列何素数间隙有关的公式: 该公式和尚克斯猜想在形式上一致,但同时提出了低次项。

马雷克·沃尔夫(Marek Wolf)[15]则猜想在以素数计数函数表示的状况下,最大素数间隙如下:

其中孪生素数常数的两倍,可见A005597A114907的相关内容。再一次地,该公式和尚克斯猜想在形式上一致,但同时提出了如下的低次项:

托马斯·雷·奈斯利德语Thomas Ray Nicely(发现奔腾浮点除错误的数学家)曾对许多大素数间隙进行计算,[16]他借由下列公式来计算素数间隙与克拉梅尔猜想相契合的程度:

他写道“即使对于已知最大的素数间隙,的值都维持在1.13左右”。

Remove ads

参见

参考资料

外部链接

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads