热门问题
时间线
聊天
视角

辛钦常数

来自维基百科,自由的百科全书

Remove ads
Remove ads

数论领域中,苏联数学家亚历山大·雅科夫列维奇·辛钦(Aleksandr Yakovlevich Khinchin)证明对于几乎所有实数x,其连分数表示式的系数ai几何平均数之极限存在,且与x数值无关,此数值称为辛钦常数(英语:Khinchin's constant)。

以下是x连分数表示式

针对任意实数x,以下的等式几乎总是为真

其中 为辛钦常数

OEIS数列A002210).

不符合上述条件的实数包括了有理数、实系数二次方程的解(包括黄金比例 ),以及自然对数的底e。目前辛钦常数是否为无理数代数数仍犹未可知。虽然几乎所有实数之连分数系数的几何平均都趋近于辛钦常数,但除了特意建构的实数外,并没有实数被严格证明有此性质,仅有一些数值上的证据,像是圆周率欧拉-马歇罗尼常数

Remove ads

开放问题

Thumb
似乎会趋近辛钦常数


Remove ads

相关条目

参考资料

外部链接

Loading content...
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads