分数 - Wikiwand
For faster navigation, this Iframe is preloading the Wikiwand page for 分数.

分数

维基百科,自由的百科全书

各种各样的
基本

正数
自然数
正整数
小数
有限小数
无限小数
循环小数
有理数
代数数
实数
复数
高斯整数

负数
整数
负整数
分数
单位分数
二进分数
规矩数
无理数
超越数
虚数
二次无理数
艾森斯坦整数

延伸

二元数
四元数
八元数
十六元数
超实数
大实数
上超实数

双曲复数
双复数
复四元数
共四元数英语Dual quaternion
超复数
超数
超现实数

其他

质数
可计算数
基数
阿列夫数
同馀
整数数列
公称值

规矩数
可定义数
序数
超限数
p进数
数学常数

圆周率
自然对数的底
虚数单位
无穷大

取出四份之一蛋糕。图中显示剩馀的蛋糕是四份之三。蛋糕上的虚线表示可以把蛋糕进行切割分成相等的部份。每一个蛋糕被表示为分数¼。
取出四份之一蛋糕。图中显示剩馀的蛋糕是四份之三。蛋糕上的虚线表示可以把蛋糕进行切割分成相等的部份。每一个蛋糕被表示为分数¼。

分数(fraction)是用分式(分数式)表达成 的数()。在上式之中, 称为分母(Denominator)而 称为分子(Numerator)[1],可视为某件事物平均分成 份中占 份,读作“ 分之 ”。中间的线称为分线分数线。有时人们会用 来表示分数。

用法

分数有各种不同的用法与意义:

  • 两个整数的比例,这是两个数量的比较关系。
  • 有理数:可以表达为两个整数的分数的数称为有理数。就数系来说,整数分数与有理数是同义词。
  • 整数除法,结果会是一个整数有限小数循环小数
  • 等分: 表示将全部分成三等份,然后只取其中的一份。这称为单位分数 (unit fraction),参见古埃及分数 也就是 这个整数的倒数

这些概念在数学里都是相通的,只是在不同的使用场合中有其实际意义no

分类

最简分数(既约分数)(Irreducible Fraction)
分子是整数,分母是正整数,且分子和分母互质的分数。例如:
真分数(Proper Fraction)
除商小于1、大于0的分数,即分子小于分母的分数。当分子一样大的时候,分母越大则值就越小,当分母一样的时候,分子越大,数值就越大。例如:
假分数(Top-heavy/Improper Fraction)
假分数是指除商不小于1的分数,即分子等于或大于分母的分数,可写成带分数。例如:
带分数mixed numeral、Mixed Fractions、Mixed Numbers[1]
一个整数(whole number)加一个真分数,例如,读作“d又b分之a”;又例如,就是一又二分之一。可写成假分数,与等价。
十进位分数(decimal fraction)
分母为 的次方的分数称为十进位分数,通常使用小数的形式来表达,例如, 一般记为 ,也可以百分率简记为 ,或是以 记为
单位分数:分子为1,分母是整数的分数。也可视为该整数的倒数。例如:
古埃及分数(Egyptian fraction)
将分数表达成单位分数之和。例如:
繁分数:分子和/或分母包含了分数,例如。可以用“外乘外、内乘内”的方法简化,即前面的式子等如
连分数:外观如的分数,其中是整数。若只有有限个非零,则连分数是一个分数。

分数运算

分数如自然数般,跟从互联律结合律分配律和反除以零的规则。

约分、扩分及通分

一个分数约分后或扩分后,其分数与原来之分数的值相等,称为等值分数。

约分

“约分”是将一个分数的分子和分母同除以一个比1大的整数(它们的公因数)。 约分后的分数和原来分数的值相等。

扩分

“扩分”是将一个分数的分子和分母同乘以比1大的数。扩分后的分数和原来分数的值相等。

通分

“通分”是利用约分或扩分,将两个分母不同的分数,分别化为同分母的分数。

加法及减法

笔算分数的加减法时,必须将分母用予倍的方法化成同一数字才能进行同级分数之和或差,这个过程称为“扩分”、“通分”、“通分母扩分子”等等,为了方便地求得所须分母,计算时一般以加数和被加数的最小公倍数作为新的分母。然后将事先倍大了的分子加上,合成和后再作约简。例如:

乘法及除法

分数乘法最晚在中国秦代即有,里耶秦简博物馆馆长彭成刚表示:里耶秦简秦朝“九九表”每枚木牍上竖写的数字连起来就是一个乘法运算,更为惊奇的是,中国当时还出现了分数乘法,例如二乘以二分之一等于一。分数的乘除无视分子母的特性,将分子和分母各自处理便可,但是由于整数除法亦容易引起小数,加上不适合出现于分数形式,而且除法也是乘法的逆函数,故此计算时一般将被除数化成其倒数,把除法改为乘法较为方便。例如:

相关话题

外部链接

  1. ^ 1.0 1.1 Mixed Fractions. www.mathsisfun.com. [2019-07-10]. 
{{bottomLinkPreText}} {{bottomLinkText}}
分数
Listen to this article