热门问题
时间线
聊天
视角

三十面体

来自维基百科,自由的百科全书

三十面體
Remove ads

几何学中,三十面体是指有30个面的多面体[1],在三维空间的三十面体当中没有任何一个形状是正多面体,换言之即正三十面体并不存在,但仍有许多由正多边形组成的三十面体,例如二侧帐塔截角立方体。也存在等面的三十面体,例如菱形三十面体。 虽然三维空间中不存在正三十面体,但在四维空间中允许三十面体以扭歪正多面体的形式存在(即扭歪三十面体)。 部分晶体结构也为三十面体,例如{211}和{100}复合而成的截六角鸢形二十四面体[注 1][2]。 三十面体在英语中(Triacontahedron)通常是指菱形三十面体(Rhombic triacontahedron)[3]:49。 此外要构成三十面体至少要有17个顶点[4]

事实速览 部分的三十面体, 定义 ...
Remove ads

用途

三十面体的用途多半是学术用途,例如晶体结构的探讨、星形三十面体的探讨[2][5]。结构较均匀的三十面体则可以被制作成骰子,例如十五方偏方面体和菱形三十面体等[6]。此外,亦有以三十面体为外型的魔术方块,例如大菱形三十面体[7][8]等。

常见的三十面体

常见的三十面体中有一些柱体锥体以及部份的詹森多面体均匀多面体对偶多面体

截六角鸢形二十四面体

Thumb
截六角鸢形二十四面体

截六角鸢形二十四面体为截去六个顶点的鸢形二十四面体,其中这六个顶点可以对应到立方体的面,其由30个面、72条边和44个顶点组成,在其30个面中,有24个五边形和6个四边形。这个立体是晶体结构{100}(立方体)和{211}(鸢形二十四面体)的复合晶体结构,是一种三十面体(30-hedron)。[2]

二侧帐塔截角立方体

二侧帐塔截角立方体是指在截角立方体的两个八边形面上各叠上一个四角帐塔所构成的几何体。

二侧帐塔截角立方体可以分成两种,一种是叠上一个四角帐塔位于相对的八边形面,称为对二侧帐塔截角立方体;另一种是叠上一个四角帐塔位于截角立方体上两相邻的八边形面,称为邻二侧帐塔截角立方体。其中,对二侧帐塔截角立方体是一种詹森多面体。[9]

Thumb
对二侧帐塔截角立方体
Thumb
邻二侧帐塔截角立方体

菱形三十面体

Thumb
菱形三十面体

菱形三十面体Rhombic triacontahedron)是一个由菱形构成的三十面体[1],由30个全等黄金菱形组成,具有60条边和32个顶点[10],其对偶多面体截半二十面体[11][12]。由于其对偶多面体是一个半正多面体,因此这种立体也属于卡塔兰多面体[13]

由于菱形三十面体是一种面可递的立体[14],换句话说,即这立体上的任意两个面A和B,若透过旋转或镜射这个立体,使A移动到B原来的位置时,而两个面仍然占据了相同的空间区域[15]。由于这种特性使得菱形三十面体有时会成为30面骰子的设计[6]

二十九角锥

Thumb
正二十九角锥

二十九角锥是一种底面为二十九边形的锥体,为三十面体的一种,具有30个面、58条边和30个顶点,其对偶多面体是自己本身[16]。正二十九角锥是一种底面为正二十九边形的二十九角锥,在施莱夫利符号中可以用{}∨{29}来表示。底边长为、高为的正二十九角锥体积和表面积[16]

Remove ads

二十八角柱

Thumb
正二十八角柱

二十八角柱是一种底面为二十八边形的柱体,是三十面体的一种,由30个面和84条边和56个顶点组成,对偶多面体为双二十八角锥。[17]正二十八角柱代表每个面都是正多边形的二十八角柱,其每个顶点都是2个正方形和1个二十八边形的公共顶点,顶点图表示。其在施莱夫利符号中可以用{28}×{}或t{2,28}来表示,在考克斯特符号英语Coxeter-Dynkin diagram中可以用node_1 28 node 2 node_1 来表示,在威佐夫符号英语Wythoff symbol中可以利用2 28 | 2来表示,在康威多面体表示法中可以利用P28来表示。底边长为单位长的正二十八角柱体积和表面积[17]

Remove ads

十四角反角柱

Thumb
正十四角反角柱

十四角反角柱是一种底面为十四边形的反柱体,是三十面体的一种,由30个面和56条边和28个顶点组成,对偶多面体为十四方偏方面体。[18]正十四角反角柱代表每个面都是正多边形的十四角反角柱,其每个顶点都是3个正三角形和1个正十四边形的公共顶点,顶点图表示。其在施莱夫利符号中可以用s{2,28}、sr{2,14}或来表示[18],在考克斯特符号英语Coxeter-Dynkin diagram中可以用node_h 2x node_h 28 node node_h 2x node_h 14 node_h 来表示,在威佐夫符号英语Wythoff symbol中可以利用| 2 2 14来表示,在康威多面体表示法中可以利用A14来表示。底边长为单位长的正十四角反角柱体积和表面积[18]

Remove ads

十五方偏方面体

十五方偏方面体是一种以十五边形为底的偏方面体,是三十面体的一种,由30个面和60条边和32个顶点组成,对偶多面体为十五角反角柱。[19]

星形三十面体

Thumb
鲁洛夫斯的星形三十面体,由6个十二边形和24个正方形组成[20]

有一些三十面体具有自相交的结构,也就是星形三十面体,例如部分的均匀多面体对偶,大多由考克斯特等人发现[21],而鲁洛夫斯(Roelofs)也发现了一种不属于均匀多面体也不是其对偶的星形三十面体,其由6个十二边形和24个正方形组成[20]

无穷星形三十面体

无穷星形三十面体是指具有30个面的无穷星形多面体。作为均匀多面体的对偶多面体,无穷星形三十面体共有六种,分别为小二十面半无穷星形十二面体英语Small icosihemidodecacron小十二面半无穷星形十二面体英语Small dodecahemidodecacron大二十面半无穷星形十二面体英语Great icosihemidodecacron大十二面半无穷星形十二面体英语Great dodecahemidodecacron小十二面半无穷星形二十面体英语Small dodecahemicosacron大十二面半无穷星形二十面体英语Great dodecahemicosacron。其中,小二十面半无穷星形十二面体英语Small icosihemidodecacron小十二面半无穷星形十二面体英语Small dodecahemidodecacron外观相同、大二十面半无穷星形十二面体英语Great icosihemidodecacron大十二面半无穷星形十二面体英语Great dodecahemidodecacron外观也相同、小十二面半无穷星形二十面体英语Small dodecahemicosacron大十二面半无穷星形二十面体英语Great dodecahemicosacron外观也相同。[23]

Thumb Thumb Thumb
小二十面半十二面体的对偶多面体
小二十面半无穷星形十二面体英语Small icosihemidodecacron
小十二面半十二面体的对偶多面体
小十二面半无穷星形十二面体英语Small dodecahemidodecacron
大二十面半十二面体的对偶多面体
大二十面半无穷星形十二面体英语Great icosihemidodecacron
大十二面半十二面体的对偶多面体
大十二面半无穷星形十二面体英语Great dodecahemidodecacron
小十二面半二十面体的对偶多面体
小十二面半无穷星形二十面体英语Small dodecahemicosacron
大十二面半二十面体的对偶多面体
大十二面半无穷星形二十面体英语Great dodecahemicosacron
6个互相相交的无限高十角柱 6个互相相交的无限高十角星柱英语Decagrammic prism 10个互相相交的无限高六角柱
Remove ads

均匀多面体对偶

除了上述六种无穷星形三十面体之外,还有两种均匀多面体的对偶多面体为三十面体,分别为内侧菱形三十面体[24]大菱形三十面体[25]

Thumb
内侧菱形三十面体
Thumb
大菱形三十面体

三十面体列表

更多信息 名称, 种类 ...

扭歪三十面体

Thumb
四角六片三角孔扭歪正三十面体是一个扭歪三十面体。其位于四维空间,图为四维到三维的施莱格尔投影。

扭歪三十面体是指面与顶点并不存在同一个三维空间而无法确定体积的三十面体,扭歪三十面体仅能存在于四维或以上的空间。

而扭歪三十面体的一个例子为四角六片三角孔扭歪正三十面体,其由30个正方形组成,具有30个面、60条边和20个顶点,在施莱夫利符号中计为{4,6|3},可以看做是截半五胞体英语Runcinated 5-cell去除所有正三角形面的结果,因此与截半五胞体英语Runcinated 5-cell共用相同的顶点布局。[27]

参见

注释

参考文献

外部链接

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads