塑膠數或銀數是一元三次方程 x 3 = x + 1 {\displaystyle x^{3}=x+1\,} 的唯一一個實數根,其值為 1 2 + 1 6 23 3 3 + 1 2 − 1 6 23 3 3 {\displaystyle {\sqrt[{3}]{{\frac {1}{2}}+{\frac {1}{6}}{\sqrt {\frac {23}{3}}}}}+{\sqrt[{3}]{{\frac {1}{2}}-{\frac {1}{6}}{\sqrt {\frac {23}{3}}}}}} 快速預覽 塑膠數, 識別 ...塑膠數塑膠數 數表—無理數 2 {\displaystyle \color {blue}{\sqrt {2}}} - φ {\displaystyle \color {blue}\varphi } - 3 {\displaystyle \color {blue}{\sqrt {3}}} - 5 {\displaystyle \color {blue}{\sqrt {5}}} - δ S {\displaystyle \color {blue}\delta _{S}} - e {\displaystyle \color {blue}e} - π {\displaystyle \color {blue}\pi } 識別種類無理數符號 ρ {\displaystyle \rho } 位數數列編號 A060006性質連分數[1; 3, 12, 1, 1, 3, 2, 3, 2, 4, 2, 141, 80 ...][1]以此為根的多項式或函數 x 3 − x − 1 = 0 {\displaystyle x^{3}-x-1=0\,} 表示方式值 ρ ≈ {\displaystyle \rho \approx } 1.3247179572...代數形式 9 + 69 18 3 + 9 − 69 18 3 {\displaystyle {\sqrt[{3}]{\frac {9+{\sqrt {69}}}{18}}}+{\sqrt[{3}]{\frac {9-{\sqrt {69}}}{18}}}} 二進制1.010100110010000010110111…八進制1.246202672354510453326027…十進制1.324717957244746025960908…十六進制1.5320B74ECA44ADAC178897C4… 關閉 約等於 1.3247179572447460259609 {\displaystyle 1.3247179572447460259609} (OEIS數列A060006)。 塑膠數對於佩蘭數列和巴都萬數列,就如黃金分割對於斐波那契數列——是兩項的比的極限。它亦是最小的皮索數。 Remove ads塑膠數的來源 塑膠數是方程 x 3 = x + 1 {\displaystyle x^{3}=x+1\,} 的唯一實數根。 對於方程 x 3 = x + 1 {\displaystyle x^{3}=x+1\,} ,現將等式右邊變為0,即 x 3 − x − 1 = 0 {\displaystyle x^{3}-x-1=0\,} 由勘根定理可判斷出該實根大小介於1與2之間,設 x = λ y + y {\displaystyle x={\frac {\lambda }{y}}+y\,} , 則 y = x 2 + 1 2 x 2 − 4 λ {\displaystyle y={\frac {x}{2}}+{\frac {1}{2}}{\sqrt {x^{2}-4\lambda }}\,} 得到 − 1 − y − λ y + ( y + λ y ) 3 = 0 {\displaystyle -1-y-{\frac {\lambda }{y}}+\left(y+{\frac {\lambda }{y}}\right)^{3}=0\,} 等式兩邊同時乘 y 3 {\displaystyle y^{3}} 得 y 6 + y 4 ( 3 λ − 1 ) − y 3 + y 2 ( 3 λ 2 − λ ) + λ 3 = 0 {\displaystyle y^{6}+y^{4}\left(3\lambda -1\right)-y^{3}+y^{2}\left(3\lambda ^{2}-\lambda \right)+\lambda ^{3}=0\,} 令 λ = 1 3 {\displaystyle \lambda ={\frac {1}{3}}\,} ,將其帶入上面方程,並設 z = y 3 {\displaystyle z=y^{3}\,} ,得到一個 z {\displaystyle z} 的二次方程 z 2 − z + 1 27 = 0 {\displaystyle z^{2}-z+{\frac {1}{27}}=0\,} 解得 z = 1 18 ( 9 + 69 ) {\displaystyle z={\frac {1}{18}}\left(9+{\sqrt {69}}\right)\,} 根據 z = y 3 {\displaystyle z=y^{3}\,} ,得 y 3 = 1 18 ( 9 + 69 ) {\displaystyle y^{3}={\frac {1}{18}}\left(9+{\sqrt {69}}\right)\,} 則 y {\displaystyle y} 有實數解 y = 1 2 + 1 6 23 3 3 {\displaystyle y={\sqrt[{3}]{{\frac {1}{2}}+{\frac {1}{6}}{\sqrt {\frac {23}{3}}}}}\,} 根據 y {\displaystyle y} 與 λ {\displaystyle \lambda } 的關係,得 y = x 2 + 1 2 x 2 − 4 3 {\displaystyle y={\tfrac {x}{2}}+{\tfrac {1}{2}}{\sqrt {x^{2}-{\tfrac {4}{3}}}}\,} ,得 x {\displaystyle x} 的實數解 x = 1 2 + 1 6 23 3 3 + 1 2 − 1 6 23 3 3 {\displaystyle x={\sqrt[{3}]{{\frac {1}{2}}+{\frac {1}{6}}{\sqrt {\frac {23}{3}}}}}+{\sqrt[{3}]{{\frac {1}{2}}-{\frac {1}{6}}{\sqrt {\frac {23}{3}}}}}\,} Remove ads參考文獻Loading content...Loading related searches...Wikiwand - on Seamless Wikipedia browsing. On steroids.Remove ads