热门问题
时间线
聊天
视角
掃描穿透式電子顯微鏡
来自维基百科,自由的百科全书
Remove ads
掃描穿透式電子顯微鏡(英語:Scanning transmission electron microscope;縮寫為STEM)是利用電磁透鏡把電子束會聚成非常小的束斑在薄樣品上進行逐點掃描,並利用探測器收集透過樣品的散射電子進行成像的一種顯微鏡技術。其為穿透式電子顯微鏡(TEM)的一種,與傳統TEM的區別在於STEM的電子束被匯聚得非常細(束斑大小一般為0.05-0.2 nm)[1],然後該光斑在光柵照明系統下掃描樣品,使得樣品在每個點都被平行於光軸的光束照亮。因此可與環形暗場成像(ADF)、能量色散X射線光譜(EDX)或電子能量損失譜(EELS)等分析技術進行聯用[2][3]。

一個典型的STEM是在傳統TEM基礎上配備了額外的掃描線圈、偵測器以及相關電路系統,使得其可在STEM與TEM兩種模式間進行切換。當然也有一些專用於STEM的電子顯微鏡[4]。
STEM可獲高解析度的圖像,但這需要穩定的外部環境。外部振動、溫度波動、聲波以及電磁波都會干擾高解析度圖像的獲得[5]。
Remove ads
歷史
世界首台STEM由德國西門子的曼弗雷德·馮·阿登納(Manfred von Ardenne)於1938年發明[6][7] ,但這台STEM的成像效果不及當時的穿透式電子顯微鏡 (TEM),而且阿登納僅用了兩年來處理這個問題,之後不了了之。這台STEM於1944年二戰期間被空襲炸毀,然而二戰結束後阿登納再也沒有回到西門子繼續工作[8]。STEM的發展陷入停滯。
這種停滯直到20世紀70年代芝加哥大學的阿爾伯特·克魯(Albert Crewe)發明了場發射電子槍[9]才得以結束。克魯並在初代STEM的基礎上額外添加一個高質量物鏡,奠定了現代STEM。克魯在此基礎上使用一個環形暗場探測器實現了對原子的成像。克魯和其同事隨後又開發了冷場發射電子源,實現了利用STEM在碳基底上對單個重原子的成像觀測[10]。
隨後到了80年代末90年代初,STEM的像解析度達到了2 Å(埃米)以下,意味著其可以對某些材料中的原子結構進行成像[11]。
Remove ads
在STEM中添加一個像差校正器(主要是校正球差)後電子束斑進一步匯聚減少到亞埃米級,使得成像解析度步入亞埃米級,這樣一來人們能夠以前所未有的清晰度觀測單個原子柱(atomic column)。1997年像差校正STEM的解析度達到了1.9 Å[12],並於2000年提升至約1.36 Å[13]。目前更先進的像差校正STEM解析度可達50 pm(0.5 Å)以下[14]。這種成像能力提升對於實現原子解析度化學和元素光譜分析至關重要。
STEM的成像模式
STEM的環形暗場成像模式是指利用一個環形偵測器收集偏離主透射束方向上的前散射電子進行成像。特別是利用一個高角度環形暗場偵測器進行成像時,可以得到原子級解析度Z襯度像,意味著圖像襯度能直接反應對應原子柱的原子序數相對大小[15]。其與傳統的高分辨電子顯微鏡(HRTEM)像相比,像襯度更容易解釋[3][2]。
在STEM中,明場成像模式是採用一個軸向明場偵測器置於透射束光錐中心位置,形成一個與環形暗場像襯度相反的明場像[16]。其中環形明場像(ABF)也可得到原子級解析度的圖像,其常用於諸如氧、鋰等輕元素的觀測[17][18]。在同樣成像條件下,ABF像解析度比ADF像高,但ABF更容易受像差影響[19]


微分相位襯度成像或差分相位襯度成像是利用電磁場對電子束進行偏轉成像的模式。運動的電子受到勞侖茲力作用下會發生偏轉,當帶有一個負電荷-e的電子穿過電場和磁場時受到的力為:
,其中為電子受電場產生的電場力,為受磁場產生的勞侖茲力。
對於純磁場,電子束的偏轉量βL為[20]:

其中為電子波長,為普朗克常數,為電子在磁場中沿偏轉軌跡累計受到的磁感應強度。
若電子以垂直於厚度為的樣品入射,且樣品中對應局部區域內部磁感應強度恆定為,則可簡化為一個常數,因此可以通過分段掃描或採用陣列偵測器收集偏轉電子束可以得到DPC像[20]。基於該原理,可以對材料內部的電場[21]和磁場[20][22]分布進行成像。
雖然勞侖茲力使電子束偏轉的古典電磁模型能直觀地解釋DPC成像原理,但利用阿哈羅諾夫-玻姆效應解釋由電磁場產生的相位移這一量子力學模型是不可忽視的[20]。
對於大多數鐵磁材料來說,DPC模式下物磁透鏡的電流大小需要減少到幾乎為0。因為當鐵磁性樣品位於物鏡磁場中時,樣品內部磁場可高達幾個T,如此大的磁場可破壞大多數鐵磁材料的磁域結構[23]。然而,物鏡電流的減小又會使得像差明顯,電子束匯聚程度減弱,束斑變大,導致解析度下降,因此需要一個像差校正器進行糾正,使得解析度可達到1 nm量級[24]。
Remove ads
4D STEM是一種新的STEM技術,其偵測器可以記錄樣品掃描過程中每一個像素點處所有的散射和非散射電子形成會聚束電子繞射圖案,即形成一個4維的數據集(每個2D掃描點處產生一個2D的繞射圖案)[25],因此該技術常被稱為四維STEM技術[26][27]。用該技術生成的4維數據集經過分析處理可重建出與任何傳統探測器幾何結構相當的圖像,並可以高空間解析度反應樣品中的各種場,包括應變場、電場等[28]。同時該技術也可用於疊層成像。
STEM中的光譜學技術
當電子束透過樣品時,一些電子與樣品交互作用會發生非彈性散射導致電子損失一部分能量。在電子能量損失譜(EELS)中,通過一個電子能譜儀測量電子損失的能量大小,從而識別電漿和元素電離損失峰(電離邊)等特徵資訊。EELS的能量精度足以觀察到電離邊的精細結構,意味著EELS可用於測定元素分布[29]。STEM中EELS可以實現原子級解析度元素光譜分布表徵[30]。在此基礎上利用能量單色器可以實現EELS約10 meV的精度,使得STEM可以測定振動光譜[31]。
當電子束透過樣品時,高速電子會擊飛樣品原子的電子使之發生電離,並釋放出特徵X射線。能量色散X射線譜(EDX或EDS)則是利用X射線能譜儀測定這些特徵X射線,來實現樣品的元素分析以及元素分布的測定[32]。傳統STEM中的EDS偵測器僅能覆蓋很小的立體角,X射線檢測效率很低。但現已有大立體角的偵測器發明出來[33], 同時現如今已經實現了原子級的EDS元素分布表徵[34]。
其他STEM技術
採用一些專用的樣品杆以及對顯微鏡進行改造,可以得到多種STEM附加技術,下面將介紹一些改造示例:
STEM斷層成像是指通過傾斜樣品獲得一系列二維投影像,然後利用這些二維投影像進行三維重構就可以得到樣品內外部結構資訊的方法[35] 。特別是對於高角環形暗場-STEM(HADDF-STEM)成像模式特別有用,因為HAADF-STEM像僅與樣品質量投影厚度和原子序數大小有關,使得三維重構過程不用引入其他干擾,得到的三維圖像高度可信[36]。
冷凍電鏡技術與STEM技術結合得到的冷凍STEM(Cryo-STEM)技術允許樣品在液氮或液氦溫度下保持在顯微鏡中,這對於在室溫高真空條件下易揮發的樣品進行成像非常有用。如玻璃化的生物樣品[37]、玻璃化材料固液界面[38]以及含硫樣品(室溫電鏡中硫容易昇華)的觀測都用到了冷凍STEM[39]。
為了研究粒子在氣相環境中的反應過程,可在STEM的樣品室配置一個壓差系統使得樣品置於氣流中反應,並配有一個特製的控溫支架來調節反應溫度[40];亦或者改造成一個封閉的樣品室並讓氣體在室內流動[41],這樣就得到了原位STEM(in situ STEM)或環境STEM(ESTEM)。類似地,在STEM樣品架上安裝一個微流控封殼就得到了液相電子顯微鏡[42][43][44],可以用於研究奈米顆粒以及生物細胞在液體環境中的行為[45]。
低壓電子顯微鏡(LVEM) 是一種加速電壓被設計為0.5-30 kV之間,即加速電壓相對一般電鏡較低的電子顯微鏡。而且有些LVEM設備同時也可具備掃描電鏡(SEM)、透射電鏡(TEM)和掃描透射電鏡(STEM)的功能。較低的加速電壓可以增加圖像襯度,這對生物標本來說特別重要,因為可以減少或免於試樣的染色步驟(一般生物樣品的電鏡觀測需要提前進行染色)。在LVEM的SEM、TEM和STEM模式下可以實現幾奈米的解析度,而且低加速電壓使得電鏡可以採用永磁體作為透鏡,而且微柱可免於冷卻[46][47]。
參見
參考文獻
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads