热门问题
时间线
聊天
视角
模除
来自维基百科,自由的百科全书
Remove ads
Remove ads
模除(英語:modulo 有時也稱作 modulus),又稱模數、取模、取模運算等,它得出一個數除以另一個數的餘數。給定兩個正數:被除數和除數,(通常縮寫為),得到的是使用歐幾里得除法時的餘數。所得之數被稱為的小數部份。

舉個例子:計算表達式得到,因為的商為而餘數為;而得到,因為的商為而餘數為;做除法不能整除時得到是有理數,平常使用的計算器採用了有限個數位的十進制表示法,它以小數點分隔整數部份和小數部份,比如。
雖然通常情況下模除的被除數和除數都是整數,但許多計算系統允許其他類型的數值運算,比如對浮點數取模。在所有計算系統中當被除數和除數都是正數時,結果的餘數的範圍為;而經常是未定義的,在程式語言里可能會導致除以零錯誤。當被除數或除數為負數時,不同的程式語言對結果有不同的處理。
Remove ads
各種定義
在數學中,取模運算的結果就是歐幾里德除法的餘數。當然也有許多其他的定義方式。計算機和計算器有許多種表示和儲存數字的方法,因此在不同的硬體環境下、不同的程式語言中,取模運算有著不同的定義。
幾乎所有的計算系統中,除以得到商和餘數均滿足以下式子:
即使如此,當餘數非時,餘數的符號仍然是有歧義的:餘數非時,它的符號有兩種選擇,一個是正號而另一個是負號[a]。通常情況下,在數論中總是選擇正餘數。但在編程中,選擇餘數的符號依賴於程式語言和被除數或除數的符號。在程式語言所定義的整數模除中,ISO/IEC標準Pascal[1]和ALGOL 68[2],在計算出的餘數r
為負數時,返回正數作為結果[b];另一些程式語言如ISO/IEC C90,當被除數或除數是負數時,C90標準並沒有做具體的規定,而是留給編譯器去定義並實現[3]。在大多數系統中是未定義的,雖然有些系統定義它就等於。更多詳情參見後續章節表格。
- 很多取模的實現都使用了「截斷除法」(英語:truncated division),商經由截尾函數來定義,商向零取整,結果等於普通除法所得的小數靠近方向的第一個整數:
餘數和被除數符號一致:
- 高德納定義的「下取整除法」(英語:floored division)[4],商經由下取整函數來定義,商總是向負無窮取整,即使商已經是負數:
餘數和除數符號一致:
- Raymond T. Boute使用的歐幾里得除法定義中[5],要求滿足,在這種情況下:
這裡的是符號函數,餘數總是非負數:
- Common Lisp的
round
函數和IEEE 754使用「修約除法」(英語:rounded division),商經由修約函數(約半成偶)來定義為:當商為偶數時,餘數範圍是;當商為奇數時,餘數範圍是:
- Common Lisp的
ceiling
函數使用「上取整除法」(英語:ceiling division),商經由上取整函數定義為:餘數與除數有相反的符號:
Remove ads
記號
一些計算器有取模mod()按鈕,很多程式語言里也有類似的函數,通常像mod(a, n)
這樣。有些語言也支持在表達式內使用%
、mod
或Mod
作為取模或取余操作符,比如a % n
或a mod n
。
在一些沒有mod()函數的環境中或許可使用等價的:a - (n * int(a/n))
。這裡的int()
函數事實上等價於截斷函數。
性質及恆等式
一些取模操作,經過分解和展開可以等同於其他數學運算。這在密碼學的證明中十分有用,例如:迪菲-赫爾曼密鑰交換。
Remove ads
程式語言實現
此外,很多計算機系統提供divmod
功能,它同時產生商和餘數。例子x86架構的IDIV
指令,C程式語言的div()
函數,和Python的divmod()
函數。
Remove ads
常見錯誤
當取模的結果與被除數符號相同時,可能會導致意想不到的錯誤。
舉個例子:如果需要判斷一個整數是否為奇數,有人可能會測試這個數除 2 的餘數是否為 1:
bool is_odd(int n) {
return n % 2 == 1;
}
但在一個取模結果與被除數符號相同的程式語言里,這樣做是錯的。因為當被除數 n 是奇數且為負數時, 得到 −1,此時函數返回「假」。
一種正確的實現是測試取模結果是否為 0,因為餘數為 0 時沒有符號的問題:
bool is_odd(int n) {
return n % 2 != 0;
}
或者考慮餘數的符號,有兩種情況:餘數可能為 1 或 -1。
bool is_odd(int n) {
return n % 2 == 1 || n % 2 == -1;
}
Remove ads
性能問題
可以通過依次計算帶餘數的除法實現取模操作。特殊情況下,如某些硬體上,存在更快的實現。 例如:2 的 n 次冪的模,可以通過逐位與運算實現:
x % 2n == x & (2n - 1)
例子,假定 x 為正數:
x % 2 == x & 1
x % 4 == x & 3
x % 8 == x & 7
在進行位操作比取模操作效率更高的設備或軟體環境中,以上形式的取模運算速度更快。[56]
編譯器可以自動識別出對 2 的 n 次冪取模的表達式,自動將其優化為 expression & (constant-1)
。這樣可以在兼顧效率的情況下寫出更整潔的代碼。這個優化在取模結果與被除數符號一致的語言中(包括 C 語言)不能使用,除非被除數是無符號整數。這是因為如果被除數是負數,則結果也是負數,但 expression & (constant-1)
總是正數,進行這樣的優化就會導致錯誤,無符號整數則沒有這個問題。
Remove ads
用途
參見
- 模 (消歧義)和模 (術語) —— 「模數(Modulo)」這個詞的許多用法,都是 1801 年卡爾·弗里德里希·高斯引入模算數時產生的。
- 模冪運算
- 同餘
腳註
參考文獻
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads