Умежаная акружына
From Wikipedia, the free encyclopedia
Remove ads
Акружына завецца ўмежанай[1][2] (упісанай) у кут, калі яна ляжыць усярэдзіне кута і датычыцца ягоных бакоў. Цэнтар акружыны, умежанай у кут, ляжыць на раўнасечнай гэтага кута.

Акружына завецца ўмежанай у пукаты шматкутнік, калі яна ляжыць усярэдзіне дадзенага шматкутніку і датычыцца ўсіх простых лініяў, якія праходзяць празь яго бакі. У пукаты шматкутнік можна ўмежыць ня больш за адну акружыну. Сам шматкутнік у такім разе завецца акрэсьленым каля дадзенай акружыны.
Калі ў дадзены пукаты шматкутнік можна ўмежыць акружыну, то раўнасечныя ўсіх кутоў дадзенага шматкутніку перасякаюцца ў адным пункце, які зьяўляецца цэнтрам умежанай акружыны.
- Тэарэма пра трызубец: Калі — пункт перасячэньня раўнасечнай кута з умежанай акружынай, а — цэнтар умежанай акружыны, то . Тут C і B — вяршыні шматкутніку, суседнія зь вяршыняй A.
Remove ads
Глядзіце таксама
Крыніцы
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads