Раўнамернае дыскрэтнае размеркаванне
From Wikipedia, the free encyclopedia
Remove ads
Раўнамернае дыскрэтнае размеркаванне — сіметрычнае размеркаванне імавернасцей, якое ўзнікае, калі выпадковая велічыня мае аднолькавы шанец прыняць кожнае з канечнага набору значэнняў. Кожнае з значэнняў мае імавернасць .
Просты прыклад раўнамернага дыскрэтнага размеркавання — падкіданне шасціграннага кубіка. Магчымыя значэнні — 1, 2, 3, 4, 5, 6, і пры кожным падкіданні імавернасць выпадзення пэўнага значэння роўная 1/6. Калі б падкідаліся два кубікі і іх значэнні складаліся, размеркаванне такой выпадковай велічыні ўжо не было б раўнамерным, бо розныя сумы маюць розныя імавернасці.
Раўнамернае дыскрэтнае размеркаванне прынята вызначаць для цэлых лікаў, але яго можна абагульніць і на адвольнае канечнае мноства. Напрыклад, выпадковая перастаноўка атрымліваецца ў выніку выбару з роўнаімаверных перастановак пэўнай даўжыні.
Раўнамернае дыскрэтнае размеркаванне задаецца на ўсіх цэлых ліках у інтэрвале , дзе , — некаторыя цэлыя лікі і . Лікі і завуцца параметрамі раўнамернага дыскрэтнага размеркавання. Часам выкарыстоўваецца адзін параметр і значэнні велічыні бяруцца з інтэрвалу . З такой параметрызацыяй функцыя размеркавання мае выгляд .
Remove ads
Ацэнка максімуму
Няхай маем выбарку без вяртання з назіранняў з раўнамернага дыскрэтнага размеркавання на цэлых ліках . Патрабуецца ацаніць невядомы максімум . Гэтая задача вядомая пад назвай «задача пра нямецкія танкі», бо яна прымянялася для ацэнкі колькасці вырабленых нямецкіх танкаў падчас Другой сусветнай вайны.
Нязрушаная ацэнка з мінімальнай дысперсіяй задаецца формулай
- ,
дзе — максімум выбаркі, а — памер выбаркі[1].
- ,
дзе прыблізная роўнасць дасягаецца для невялікіх выбарак .
Беручы ў якасці ацэнкі выбаркавы максімум , атрымаем ацэнку максімальнай праўдападобнасці, але такая ацэнка будзе зрушанай.
Калі элементы выбаркі не пранумараваныя, але іх магчыма памеціць, памер генеральнай сукупнасці можна ацаніць метадам паўторнай лоўлі, якім карыстаюцца напрыклад для ацэнкі папуляцыі жывёл.
Remove ads
Дастатковая статыстыка
Сямейства раўнамерных дыскрэтных размеркаванняў над інтэрваламі цэлых лікаў (з адной ці дзвюма невядомымі межамі) мае канечнавымерную дастатковую статыстыку: тройку выбаркавага максімуму, мінімуму і памеру выбаркі. Пры гэтым раўнамерныя дыскрэтныя размеркаванні не з’яўляюцца экспанентавым сямействам размеркаванняў, бо іх носьбіт залежыць ад параметраў. Для сямействаў чый носьбіт не залежыць ад параметраў, тэарэма Пітмана-Купмана-Дармуа сцвярджае, што толькі экспанентавыя сямействы маюць дастатковую статыстыку, памернасць якой абмежаваная пры павелічэнні памеру выбаркі. Такім чынам, раўнамернае дыскрэтнае размеркаванне — просты прыклад абмежавання тэарэмы.
Remove ads
Зноскі
- Johnson, Roger (1994), Estimating the Size of a Population, Teaching Statistics, 16 (2 (Summer)): 50–52, CiteSeerX 10.1.1.385.5463, doi:10.1111/j.1467-9639.1994.tb00688.x
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads
