Rovnoběžník

čtyřúhelník, jehož strany tvoří dva páry rovnoběžných úseček From Wikipedia, the free encyclopedia

Rovnoběžník
Remove ads

Rovnoběžník (latinsky parallelogrammum, někdy též r(h)omboid; ve starší české literatuře kosodélník) je čtyřúhelník, jehož protilehlé strany jsou rovnoběžné.

Thumb
Rovnoběžník

Vlastnosti

Protější strany rovnoběžníku jsou shodné (mají stejnou délku) :

Protější úhly rovnoběžníku jsou shodné. Součet velikostí vnitřních úhlů čtyřúhelníku je 360°, součet dvou sousedních úhlů je 180°.

Velikost protilehlých úhlů má stejnou velikost, platí Průsečík úhlopříček e, f rovnoběžníku je jeho středem souměrnosti. Úhlopříčka rozděluje rovnoběžník na dva shodné trojúhelníky.

Úhlopříčky rovnoběžníku se vzájemně půlí. Délky úhlopříček se počítají podle vzorce:

Platí tedy rovnoběžníková rovnost:

Rovnoběžník je středově souměrný, středem souměrnosti je průsečík jeho úhlopříček.

Shrnutí vlastností čtyřúhelníků. [1]

Další informace čtverec, obdélník ...
Remove ads

Obsah

Obsah rovnoběžníku je roven: ,

kde a jsou délky přilehlých stran rovnoběžníku a je výška ke straně , obdobně je výška ke straně , je vnitřní úhel mezi přilehlými stranami.

V rovině

Pokud jsou vrcholy zadány pomocí souřadnic v rovině, tj. , , atd., je obsah rovnoběžníku roven absolutní hodnotě determinantu sestaveného ze souřadnic libovolných tří vrcholů takto

Ztotožníme-li, pro jednoduchost, vrchol s počátkem souřadného systému, tj. , pak tedy

Zcela analogicky lze spočítat objem libovolného rovnoběžnostěnu, resp. nadobjem libovoného -rozměrného nadrovnoběžnostěnu (v -rozměrném prostoru).

V trojrozměrném prostoru

Pokud jsou vrcholy zadány pomocí souřadnic v prostoru, tj. , , atd., a zavedeme-li stranové vektory

je obsah rovnoběžníku roven euklidovské normě (délce) vektoru , kde "" značí vektorový součin dvou vektorů. Tedy

kde "" značí skalární součin dvou vektorů.

Pokud mají směrové vektory nulové složky ve směru osy , tj.

pak

čímž dostaneme právě vztah pro výpočet obsahu rovnoběžníka v rovině.

Ztotožníme-li, pro jednoduchost, vrchol s počátkem souřadného systému, tj. , pak

v obecném případě, respektive

v případě, že směrové vektory mají navíc nulové složky ve směru osy .

Zobecněním vektorového součinu do -rozměrného prostoru (jedná se o součin lineárně nezávislých vektorů délky , jehož výsledkem je vektor kolmý na všechny předchozí, tvořící s nimi, v daném pořadí, pravotočivou bázi) lze zcela analogicky spočítat nadobsah libovolného -rozměrného nadrovnoběžníku v -rozměrném prostoru.

V n-rozměrném (reálném) prostoru

Pokud je rovnoběžník dán dvěma stranovými vektory v obecném reálném -rozměrném prostoru

pak jeho obsah je dán vztahem

kde "", resp. "" značí skalární součin dvou vektorů.

Dosazením

opět dostáváme známý vztah pro obsah rovnoběžníku v rovině.

Remove ads

Reference

Literatura

Související články

Externí odkazy

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads