Loading AI tools
spezieller Vektor eines Vektorraums Aus Wikipedia, der freien Enzyklopädie
Der Nullvektor ist in der Mathematik ein spezieller Vektor eines Vektorraums, und zwar das eindeutig bestimmte neutrale Element bezüglich der Vektoraddition. Beispiele für Nullvektoren sind die Zahl Null, die Nullmatrix und die Nullfunktion. In einem Skalarproduktraum ist der Nullvektor orthogonal zu allen Vektoren des Raums. In einem normierten Raum ist er der einzige Vektor mit Norm Null. Jeder Untervektorraum eines Vektorraums enthält zumindest den Nullvektor, wobei der kleinste Untervektorraum der Nullvektorraum ist. Der Nullvektor wird zur Definition einiger zentraler Begriffe der linearen Algebra wie lineare Unabhängigkeit, Basis und Kern verwendet. Er spielt eine wichtige Rolle bei der Lösungsstruktur linearer Gleichungen.
Der Nullvektor (englisch zero vector) eines Vektorraums ist der eindeutig bestimmte Vektor , für den
für alle Vektoren gilt. Er ist damit das neutrale Element bezüglich der Vektoraddition.
Der Nullvektor wird meist mittels der Ziffer Null durch , oder einfach nur bezeichnet. Der Nullvektor ist jedoch im Allgemeinen von dem Nullelement des Skalarkörpers des Vektorraums verschieden, das ebenfalls durch dargestellt wird. Wenn Verwechslungsgefahr besteht, wird daher der Nullvektor mit und die skalare Null mit bezeichnet. Gelegentlich wird der Nullvektor auch durch , oder als kleines o notiert.
Als einziger Vektor der euklidischen Ebene kann der Nullvektor nicht durch einen Pfeil grafisch dargestellt werden, da ihm keine Richtung zugeordnet werden kann.
Der Nullvektor eines Vektorraums ist eindeutig. Gäbe es nämlich zwei verschiedene Nullvektoren und , dann gilt sofort
und somit Gleichheit der beiden Vektoren.
Für alle Skalare aus dem Skalarkörper gilt
und analog dazu für alle Vektoren des Vektorraums
was direkt aus den beiden Distributivgesetzen in Vektorräumen durch Wahl von bzw. folgt. Zusammen gilt damit
denn aus folgt entweder oder und dann .
Im dreidimensionalen euklidischen Raum ergibt das Kreuzprodukt eines beliebigen Vektors mit dem Nullvektor wieder den Nullvektor, also
Gleiches gilt für das Kreuzprodukt eines Vektors mit sich selbst,
Weiterhin gilt die Jacobi-Identität, das heißt die zyklische Summe wiederholter Kreuzprodukte ergibt ebenfalls den Nullvektor:
Zu einer gegebenen Familie von Vektoren mit einer Indexmenge lässt sich der Nullvektor stets als Linearkombination
ausdrücken. Dabei sind die Vektoren genau dann linear unabhängig, wenn in dieser Linearkombination alle Koeffizienten sein müssen. Der Nullvektor kann daher niemals Teil einer Basis eines Vektorraums sein, denn er ist bereits für sich genommen linear abhängig. Jeder Untervektorraum eines Vektorraums enthält zumindest den Nullvektor. Die Menge , die nur aus dem Nullvektor besteht, bildet dabei den kleinstmöglichen Untervektorraum eines Vektorraums, den Nullvektorraum; seine Basis ist die leere Menge , denn die leere Summe von Vektoren ergibt definitionsgemäß den Nullvektor, also
Eine lineare Abbildung zwischen zwei Vektorräumen und über dem gleichen Skalarkörper bildet stets den Nullvektor auf den Nullvektor ab, denn es gilt
Auf den Nullvektor des Zielraums können jedoch auch weitere Vektoren aus abgebildet werden. Diese Menge heißt der Kern der linearen Abbildung und sie bildet einen Untervektorraum von . Eine lineare Abbildung ist genau dann injektiv, wenn der Kern nur aus dem Nullvektor besteht.
Eine homogene lineare Gleichung
besitzt demnach zumindest den Nullvektor als Lösung. Sie ist genau dann eindeutig lösbar, wenn der Kern des linearen Operators nur aus dem Nullvektor besteht. Umgekehrt wird eine inhomogene lineare Gleichung
mit nie durch den Nullvektor gelöst. Eine inhomogene lineare Gleichung ist genau dann eindeutig lösbar, wenn die zugehörige homogene Gleichung nur den Nullvektor als Lösung besitzt, was eine Folge der Superpositionseigenschaft ist.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.