Loading AI tools
algebraische Struktur, deren Elemente Vektoren heißen Aus Wikipedia, der freien Enzyklopädie
Ein Vektorraum oder linearer Raum ist eine algebraische Struktur, die in vielen Teilgebieten der Mathematik verwendet wird. Vektorräume bilden den zentralen Untersuchungsgegenstand der linearen Algebra. Die Elemente eines Vektorraums heißen Vektoren. Sie können addiert oder mit Skalaren (Zahlen) multipliziert werden, das Ergebnis ist wieder ein Vektor desselben Vektorraums. Entstanden ist der Begriff, indem diese Eigenschaften ausgehend von Vektoren des euklidischen Raumes abstrahiert wurden, sodass sie dann auf abstraktere Objekte wie Funktionen oder Matrizen übertragbar sind.
Die Skalare, mit denen man einen Vektor multiplizieren kann, stammen aus einem Körper. Deswegen ist ein Vektorraum immer ein Vektorraum über einem bestimmten Körper. Sehr oft handelt es sich dabei um den Körper der reellen Zahlen oder den Körper der komplexen Zahlen. Man spricht dann von einem reellen Vektorraum bzw. einem komplexen Vektorraum.
Eine Basis eines Vektorraums ist eine Menge von Vektoren, die es erlaubt, jeden Vektor durch eindeutige Koordinaten darzustellen. Die Anzahl der Basisvektoren in einer Basis wird Dimension des Vektorraums genannt. Sie ist unabhängig von der Wahl der Basis und kann auch unendlich sein. Die strukturellen Eigenschaften eines Vektorraums sind eindeutig durch den Körper, über dem er definiert ist, und seine Dimension bestimmt.
Eine Basis ermöglicht es, Rechnungen mit Vektoren über deren Koordinaten statt mit den Vektoren selbst auszuführen, was manche Anwendungen erleichtert.
Es seien eine Menge, ein Körper, eine innere zweistellige Verknüpfung, genannt Vektoraddition, und eine äußere zweistellige Verknüpfung, genannt Skalarmultiplikation. Man nennt dann einen Vektorraum über dem Körper oder kurz -Vektorraum, wenn für alle und die folgenden Eigenschaften gelten:
Vektoraddition:
Skalarmultiplikation:
Anmerkungen
Für alle und gelten folgende Aussagen:
Ein anschaulicher Vektorraum ist die zweidimensionale euklidische Ebene (in rechtwinkligen kartesischen Koordinatensystemen) mit den Pfeilklassen (Verschiebungen oder Translationen) als Vektoren und den reellen Zahlen als Skalaren.
Die Summe zweier Verschiebungen ist wieder eine Verschiebung, und zwar diejenige Verschiebung, die man erhält, indem man die beiden Verschiebungen nacheinander ausführt:
Der Nullvektor entspricht der Verschiebung, die alle Punkte an ihrem Platz belässt, d. h. der identischen Abbildung.
Durch die Streckung der Verschiebung mit einem Skalar aus der Menge der reellen Zahlen erhalten wir das Dreifache der Verschiebung:
Alles zu diesem Beispiel Gesagte gilt auch in der reellen affinen Ebene.
Ist ein Körper und eine natürliche Zahl, so bildet das -fache kartesische Produkt
die Menge aller -Tupel mit Einträgen in , einen Vektorraum über . Die Addition und die skalare Multiplikation werden komponentenweise definiert; für , setzt man
und
Häufig werden die -Tupel auch als Spaltenvektoren notiert, das heißt, ihre Einträge werden untereinander geschrieben. Die Vektorräume bilden gewissermaßen die Standardbeispiele für endlichdimensionale Vektorräume. Jeder -dimensionale -Vektorraum ist isomorph zum Vektorraum . Mit Hilfe einer Basis kann jedes Element eines Vektorraums eindeutig durch ein Element des als Koordinatentupel dargestellt werden.
Ist ein Körper, ein -Vektorraum und eine beliebige Menge, so kann auf der Menge aller Funktionen eine Addition und eine skalare Multiplikation punktweise definiert werden: Für und sind die Funktionen und definiert durch
Mit dieser Addition und dieser skalaren Multiplikation ist ein -Vektorraum. Insbesondere gilt dies für , wenn also als Zielraum der Körper selbst gewählt wird. Weitere Beispiele für Vektorräume erhält man als Untervektorräume dieser Funktionenräume.
In vielen Anwendungen ist , der Körper der reellen Zahlen, oder , der Körper der komplexen Zahlen, und ist eine Teilmenge von , , oder . Beispiele sind etwa der Vektorraum aller Funktionen von nach und die Unterräume aller stetigen Funktionen und aller -mal stetig differenzierbaren Funktionen von nach .
Ein einfaches Beispiel für einen Funktionenraum ist der zweidimensionale Raum der reellen linearen Funktionen, das heißt der Funktionen der Form
mit reellen Zahlen und . Dies sind diejenigen Funktionen, deren Graph eine Gerade ist. Die Menge dieser Funktionen ist ein Untervektorraum des Raums aller reellen Funktionen, denn die Summe zweier linearer Funktionen ist wieder linear, und ein Vielfaches einer linearen Funktion ist auch eine lineare Funktion.
Zum Beispiel ist die Summe der beiden linearen Funktionen und mit
die Funktion mit
Das 3-Fache der linearen Funktion ist die lineare Funktion mit
Die Menge der Polynome mit Koeffizienten aus einem Körper bildet mit der üblichen Addition und der üblichen Multiplikation mit einem Körperelement einen unendlichdimensionalen Vektorraum. Die Menge der Monome ist eine Basis dieses Vektorraums. Die Menge der Polynome, deren Grad durch ein nach oben beschränkt ist, bildet einen Untervektorraum der Dimension . Beispielsweise bildet die Menge aller Polynome vom Grad kleiner gleich 4, also aller Polynome der Form
einen 5-dimensionalen Vektorraum mit der Basis .
Bei unendlichen Körpern kann man die (abstrakten) Polynome mit den zugehörigen Polynomfunktionen identifizieren. Bei dieser Betrachtungsweise entsprechen die Polynomräume Unterräumen des Raums aller Funktionen von nach . Zum Beispiel entspricht der Raum aller reellen Polynome vom Grad dem Raum der linearen Funktionen.
Ist ein Oberkörper von , so ist mit seiner Addition und der eingeschränkten Multiplikation als skalare Multiplikation ein -Vektorraum. Die nachzuweisenden Regeln ergeben sich unmittelbar aus den Körperaxiomen für . Diese Beobachtung spielt eine wichtige Rolle in der Körpertheorie.
Beispielsweise ist auf diese Weise ein zweidimensionaler -Vektorraum; eine Basis ist . Ebenso ist ein unendlichdimensionaler -Vektorraum, bei dem eine Basis jedoch nicht konkret angegeben werden kann.
Lineare Abbildungen sind die Abbildungen zwischen zwei Vektorräumen, die die Struktur des Vektorraums erhalten. Sie sind die Homomorphismen zwischen Vektorräumen im Sinne der universellen Algebra. Eine Funktion zwischen zwei Vektorräumen und über demselben Körper heißt genau dann linear, wenn für alle und alle
erfüllt sind. Das heißt, ist kompatibel mit den Strukturen, die den Vektorraum konstituieren: der Addition und der Skalarmultiplikation. Zwei Vektorräume heißen isomorph, wenn es eine lineare Abbildung zwischen ihnen gibt, die bijektiv ist, also eine Umkehrfunktion besitzt. Diese Umkehrfunktion ist dann automatisch ebenfalls linear. Isomorphe Vektorräume unterscheiden sich nicht bezüglich ihrer Struktur als Vektorraum.
Für endlich viele und bezeichnet man die Summe
als Linearkombination der Vektoren . Dabei ist selbst wieder ein Vektor aus dem Vektorraum .
Ist eine Teilmenge von , so wird die Menge aller Linearkombinationen von Vektoren aus die lineare Hülle von genannt. Sie ist ein Untervektorraum von , und zwar der kleinste Untervektorraum, der enthält.
Eine Teilmenge eines Vektorraums heißt linear abhängig, wenn sich der Nullvektor auf nicht-triviale Weise als eine Linearkombination von Vektoren ausdrücken lässt. „Nicht-trivial“ bedeutet, dass mindestens ein Skalar (ein Koeffizient der Linearkombination) von null verschieden ist. Andernfalls heißt linear unabhängig.
Eine Teilmenge eines Vektorraums ist eine Basis von , wenn linear unabhängig ist und die lineare Hülle von der ganze Vektorraum ist.
Unter Voraussetzung des Auswahlaxioms lässt sich mit dem Lemma von Zorn beweisen, dass jeder Vektorraum eine Basis hat (er ist frei), wobei diese Aussage im Rahmen von Zermelo-Fraenkel äquivalent zum Auswahlaxiom ist.[4] Dies hat weitreichende Konsequenzen für die Struktur eines jeden Vektorraums: Zunächst einmal lässt sich zeigen, dass je zwei Basen eines Vektorraums dieselbe Kardinalität haben, sodass die Kardinalität einer beliebigen Basis eines Vektorraums eine eindeutige Kardinalzahl ist, die man als Dimension des Vektorraums bezeichnet. Zwei Vektorräume über demselben Körper sind nun genau dann isomorph, wenn sie dieselbe Dimension haben, denn aufgrund der Gleichmächtigkeit zweier Basen von zwei Vektorräumen existiert eine Bijektion zwischen ihnen. Diese lässt sich zu einer bijektiven linearen Abbildung, also einem Isomorphismus der beiden Vektorräume, fortsetzen. Ebenso lässt sich zeigen, dass beliebige lineare Abbildungen durch die Bilder von Elementen einer Basis festgelegt sind. Dies ermöglicht die Darstellung jedweder linearer Abbildungen zwischen endlichdimensionalen Vektorräumen als Matrix. Dies lässt sich auf unendlichdimensionale Vektorräume übertragen, wobei jedoch sichergestellt werden muss, dass jede verallgemeinerte „Spalte“ nur endlich viele von null verschiedene Einträge enthält, damit jeder Basisvektor auf eine Linearkombinationen von Basisvektoren im Zielraum abgebildet wird.
Mittels des Basisbegriffs hat sich das Problem, ein Skelett in der Kategorie aller Vektorräume über einem gegebenen Körper zu finden, darauf reduziert, ein Skelett in der Kategorie der Mengen zu finden, das durch die Klasse der Kardinalzahlen gegeben ist. Jeder -dimensionale Vektorraum lässt sich auch als die -fache direkte Summe des zugrunde liegenden Körpers auffassen. Die direkten Summen eines Körpers bilden also ein Skelett der Kategorie der Vektorräume über ihm.
Die Linearfaktoren der Darstellung eines Vektors in den Basisvektoren heißen Koordinaten des Vektors bezüglich der Basis und sind Elemente des zugrunde liegenden Körpers. Erst durch Einführung einer Basis werden jedem Vektor seine Koordinaten bezüglich der gewählten Basis zugeordnet. Dadurch wird das Rechnen erleichtert, insbesondere wenn man statt Vektoren in „abstrakten“ Vektorräumen ihre zugeordneten „anschaulichen“ Koordinatenvektoren verwenden kann.
Ein Untervektorraum (auch linearer Unterraum) ist eine Teilmenge eines Vektorraums, die selbst wieder ein Vektorraum über demselben Körper ist. Dabei werden die Vektorraumoperationen auf den Untervektorraum vererbt. Ist ein Vektorraum über einem Körper , so bildet eine Teilmenge genau dann einen Untervektorraum, wenn die folgenden Bedingungen erfüllt sind:[5]
Die Menge muss also abgeschlossen bezüglich der Vektoraddition und der Skalarmultiplikation sein. Jeder Vektorraum enthält zwei triviale Untervektorräume, nämlich zum einen sich selbst, zum anderen den Nullvektorraum , der nur aus dem Nullvektor besteht. Da selbst ein Vektorraum ist, impliziert dies insbesondere die notwendige Bedingung, dass den Nullvektor enthalten muss. Jeder Unterraum ist Bild eines anderen Vektorraums unter einer linearen Abbildung in den Raum und Kern einer linearen Abbildung in einen anderen Vektorraum. Aus einem Vektorraum und einem Untervektorraum kann man durch Bildung von Äquivalenzklassen einen weiteren Vektorraum, den Quotientenraum oder Faktorraum, bilden, was maßgeblich mit der Eigenschaft eines Unterraums zusammenhängt, ein Kern zu sein, siehe auch Homomorphiesatz.
Zwei oder mehrere Vektorräume können auf verschiedene Weisen miteinander verknüpft werden, sodass ein neuer Vektorraum entsteht.
Die direkte Summe zweier Vektorräume über dem gleichen Körper besteht aus allen geordneten Paaren von Vektoren, von denen die erste Komponente aus dem ersten Raum und die zweite Komponente aus dem zweiten Raum stammt:
Auf dieser Menge von Paaren wird dann die Vektoraddition und die Skalarmultiplikation komponentenweise definiert, wodurch wiederum ein Vektorraum entsteht. Die Dimension von ist dann gleich der Summe der Dimensionen von und . Häufig werden die Elemente von statt als Paar auch als Summe geschrieben. Die direkte Summe kann auch auf die Summe endlich vieler und sogar unendlich vieler Vektorräume verallgemeinert werden, wobei im letzteren Fall nur endlich viele Komponenten ungleich dem Nullvektor sein dürfen.
Das direkte Produkt zweier Vektorräume über dem gleichen Körper besteht, wie die direkte Summe, aus allen geordneten Paaren von Vektoren der Form
Die Vektoraddition und die Skalarmultiplikation werden wieder komponentenweise definiert und die Dimension von ist wieder gleich der Summe der Dimensionen von und . Bei dem direkten Produkt unendlich vieler Vektorräume dürfen jedoch auch unendlich viele Komponenten ungleich dem Nullvektor sein, wodurch es sich in diesem Fall von der direkten Summe unterscheidet.
Das Tensorprodukt zweier Vektorräume über dem gleichen Körper wird durch
notiert. Die Elemente des Tensorproduktraums haben dabei die bilineare Darstellung
wobei Skalare sind, eine Basis von ist und eine Basis von ist. Ist oder unendlichdimensional, dürfen hierbei wieder nur endlich viele Summanden ungleich null sein. Die Dimension von ist dann gleich dem Produkt der Dimensionen von und . Auch das Tensorprodukt kann auf mehrere Vektorräume verallgemeinert werden.
In vielen Anwendungsbereichen in der Mathematik, etwa der Geometrie oder Analysis, ist die Struktur eines Vektorraums nicht ausreichend, etwa erlauben Vektorräume an sich keine Grenzwertprozesse, und man betrachtet daher Vektorräume mit bestimmten zusätzlich auf ihnen definierten Strukturen, die mit der Vektorraumstruktur in gewissem Sinn kompatibel sind. Beispiele:
Bei all diesen Beispielen handelt es sich um topologische Vektorräume. In topologischen Vektorräumen sind die analytischen Konzepte der Konvergenz, der gleichmäßigen Konvergenz und der Vollständigkeit anwendbar. Ein vollständiger normierter Vektorraum heißt Banachraum, ein vollständiger Prähilbertraum heißt Hilbertraum.
Bartel Leendert van der Waerden merkt an, dass seines Wissens der Begriff „n-dimensionaler Vektorraum“ zum ersten Mal von Hermann Günther Graßmann in seinem Buch „Die lineale Ausdehnungslehre“ von 1844 explizit definiert wurde.[6] Implizit gearbeitet wird mit dem Strukturbegriff in diversen Zusammenhängen natürlich schon wesentlich früher.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.