Top Qs
Timeline
Chat
Perspective
ARM Cortex-A
Family of microprocessor cores with ARM microarchitecture From Wikipedia, the free encyclopedia
Remove ads
The ARM Cortex-A is a family of ARM architecture processor cores developed by Arm Holdings. Designed for application-level computing, Cortex-A cores are widely used in devices such as smartphones, tablets, laptops, and embedded systems.
This article needs additional citations for verification. (June 2025) |
Cortex-A processors include both 32-bit and 64-bit designs. Most 32-bit cores implement the ARMv7-A architecture profile. All 64-bit Cortex-A cores implement the ARMv8-A profile, which supports both 64-bit and, in some cases, 32-bit execution.
The Cortex-A series is distinct from Arm's Cortex-R and Cortex-M families, which are optimized for real-time and low-power applications, respectively. Unlike the other two families, the Cortex-A series supports a memory management unit (MMU) required by many modern operating systems.
Remove ads
Overview
Summarize
Perspective
Licensing and customization
Arm Holdings does not produce or sell physical processors. Instead, it licenses its processor designs to other companies, which integrate them into custom chips. Licensees receive a synthesizable hardware description of the core—typically written in Verilog—along with a software development toolkit and the rights to produce and sell chips containing the ARM architecture.
This licensing model allows chip designers to customize the processor core to meet specific performance, power efficiency, or size requirements. Manufacturers can add proprietary features, optimize for higher clock speeds or lower power consumption, and configure the core to suit a wide range of applications. The exact configuration of an ARM-based chip varies by manufacturer and can be determined by consulting datasheets and reference manuals.
Instruction sets
Cortex-A cores implement several versions of the ARM architecture, reflecting their generation and feature set. Older models such as the Cortex-A5, A7, A8, A9, A12, A15, and A17 are based on the ARMv7-A architecture. Newer 32-bit and 64-bit cores—including the Cortex-A32, A34, A35, A53, A57, A72, and A73—use the ARMv8-A architecture, which introduced support for exclusive load and store instructions used in synchronization.[1] Later cores such as the Cortex-A55, A65, A75, A76, A77, and A78 implement ARMv8.2-A. The most recent designs, including the Cortex-A510, A710, A715, A520, and A720, are based on the ARMv9-A and ARMv9.2-A architectures.
Technical documentation
Documentation for ARM-based processors is typically organized in several layers. At the top level are high-level marketing materials and datasheets provided by the chip manufacturer, which describe the specific system-on-chip (SoC) and its capabilities. More detailed reference manuals outline the chip’s peripherals and system integration features.
At the core level, Arm publishes reference manuals for each Cortex-A processor, covering implementation details and supported features.[2] For a deeper understanding of the underlying instruction sets and architecture, Arm’s architecture reference manuals provide a comprehensive technical specification. Additional documentation, such as evaluation board guides, application notes, and errata, is often provided by manufacturers to support development and deployment.
Remove ads
See also
References
External links
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads