Top Qs
Timeline
Chat
Perspective

April 2042 lunar eclipse

Astronomical event From Wikipedia, the free encyclopedia

April 2042 lunar eclipse
Remove ads

A penumbral lunar eclipse will occur at the Moon’s descending node of orbit on Saturday, April 5, 2042,[1] with an umbral magnitude of −0.2156. A lunar eclipse occurs when the Moon moves into the Earth's shadow, causing the Moon to be darkened. A penumbral lunar eclipse occurs when part or all of the Moon's near side passes into the Earth's penumbra. Unlike a solar eclipse, which can only be viewed from a relatively small area of the world, a lunar eclipse may be viewed from anywhere on the night side of Earth. Occurring about 1.6 days after apogee (on April 4, 2042, at 1:50 UTC), the Moon's apparent diameter will be smaller.[2]

Quick Facts Date, Gamma ...

It will occur on Easter Sunday (Gregorian only), the only such case for an eclipse between April 2015 and April 2164.[3]:152

Remove ads

Visibility

The eclipse will be completely visible over east Asia and Australia, seen rising over east Africa and west and central Asia and setting over western North America.[4]

Thumb Thumb

Eclipse details

Shown below is a table displaying details about this particular eclipse. It describes various parameters pertaining to this eclipse.[5]

More information Parameter, Value ...
Remove ads

Eclipse season

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.

More information April 5Descending node (full moon), April 20Ascending node (new moon) ...
Summarize
Perspective

Eclipses in 2042

Metonic

Tzolkinex

Half-Saros

Tritos

Lunar Saros 113

Inex

Triad

Lunar eclipses of 2042–2045

This eclipse is a member of a semester series. An eclipse in a semester series of lunar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[6]

The penumbral lunar eclipse on October 28, 2042 occurs in the previous lunar year eclipse set.

More information Lunar eclipse series sets from 2042 to 2045, Descending node ...

Saros 113

This eclipse is a part of Saros series 113, repeating every 18 years, 11 days, and containing 71 events. The series started with a penumbral lunar eclipse on April 29, 888 AD. It contains partial eclipses from July 14, 1014 through March 10, 1411; total eclipses from March 20, 1429 through August 7, 1645; and a second set of partial eclipses from August 18, 1663 through February 21, 1970. The series ends at member 71 as a penumbral eclipse on June 10, 2150.

The longest duration of totality was produced by member 38 at 103 minutes, 6 seconds on June 5, 1555. All eclipses in this series occur at the Moon’s descending node of orbit.[7]

More information Greatest, First ...

Eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

More information Series members 52–71 occur between 1801 and 2150: ...

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

More information Series members between 1922 and 2200 ...

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

More information Series members between 1801 and 2200 ...

Half-Saros cycle

A lunar eclipse will be preceded and followed by solar eclipses by 9 years and 5.5 days (a half saros).[9] This lunar eclipse is related to two annular solar eclipses of Solar Saros 120.

More information March 30, 2033 ...
Remove ads

See also

Notes

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads