Top Qs
Timeline
Chat
Perspective
June 2038 lunar eclipse
Astronomical event From Wikipedia, the free encyclopedia
Remove ads
A penumbral lunar eclipse will occur at the Moon's descending node of orbit on Thursday, June 17, 2038,[1] with an umbral magnitude of −0.5259. A lunar eclipse occurs when the Moon moves into the Earth's shadow, causing the Moon to be darkened. A penumbral lunar eclipse occurs when part or all of the Moon's near side passes into the Earth's penumbra. Unlike a solar eclipse, which can only be viewed from a relatively small area of the world, a lunar eclipse may be viewed from anywhere on the night side of Earth. Occurring about 2.7 days after perigee (on June 14, 2038, at 11:30 UTC), the Moon's apparent diameter will be larger.[2]
This eclipse will be the second of four penumbral lunar eclipses in 2038, with the others occurring on January 21, July 16, and December 11.
Remove ads
Visibility
The eclipse will be completely visible over eastern North America, South America, west and southern Africa, and western Europe, seen rising over western North America and the eastern Pacific Ocean and setting over northeast Africa, eastern Europe, and the Middle East.[3]
![]() ![]() |
Eclipse details
Shown below is a table displaying details about this particular solar eclipse. It describes various parameters pertaining to this eclipse.[4]
Remove ads
Eclipse season
This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight. The first and last eclipse in this sequence is separated by one synodic month.
Related eclipses
Summarize
Perspective
Eclipses in 2038
Metonic
- Followed by: Lunar eclipse of April 5, 2042
Tzolkinex
- Preceded by: Lunar eclipse of May 7, 2031
Half-Saros
- Preceded by: Solar eclipse of June 12, 2029
- Followed by: Solar eclipse of June 23, 2047
Tritos
- Preceded by: Lunar eclipse of July 18, 2027
- Followed by: Lunar eclipse of May 17, 2049
Lunar Saros 111
- Preceded by: Lunar eclipse of June 5, 2020
- Followed by: Lunar eclipse of June 27, 2056
Inex
- Preceded by: Lunar eclipse of July 7, 2009
- Followed by: Lunar eclipse of May 28, 2067
Triad
- Preceded by: Lunar eclipse of August 17, 1951
- Followed by: Lunar eclipse of April 18, 2125
Lunar eclipses of 2038–2042
This eclipse is a member of a semester series. An eclipse in a semester series of lunar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[5]
The penumbral lunar eclipses on January 21, 2038 and July 16, 2038 occur in the previous lunar year eclipse set, and the penumbral lunar eclipses on April 5, 2042 and September 29, 2042 occur in the next lunar year eclipse set.
Saros 111
This eclipse is a part of Saros series 111, repeating every 18 years, 11 days, and containing 71 events. The series started with a penumbral lunar eclipse on June 10, 830 AD. It contains partial eclipses from September 14, 992 AD through April 8, 1335; total eclipses from April 19, 1353 through August 4, 1533; and a second set of partial eclipses from August 16, 1551 through April 23, 1948. The series ends at member 71 as a penumbral eclipse on July 19, 2092.
The longest duration of totality was produced by member 35 at 106 minutes, 14 seconds on June 12, 1443. All eclipses in this series occur at the Moon’s descending node of orbit.[6]
Eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.
Tritos series
This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.
Inex series
This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.
Half-Saros cycle
A lunar eclipse will be preceded and followed by solar eclipses by 9 years and 5.5 days (a half saros).[8] This lunar eclipse is related to two total solar eclipses of Solar Saros 118.
June 12, 2029 | June 23, 2047 |
---|---|
![]() |
![]() |
Remove ads
See also
Notes
External links
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads