Top Qs
Timeline
Chat
Perspective

May 1984 lunar eclipse

Penumbral lunar eclipse May 15, 1984 From Wikipedia, the free encyclopedia

May 1984 lunar eclipse
Remove ads

A penumbral lunar eclipse occurred at the Moon’s descending node of orbit on Tuesday, May 15, 1984,[1] with an umbral magnitude of −0.1759. A lunar eclipse occurs when the Moon moves into the Earth's shadow, causing the Moon to be darkened. A penumbral lunar eclipse occurs when part or all of the Moon's near side passes into the Earth's penumbra. Unlike a solar eclipse, which can only be viewed from a relatively small area of the world, a lunar eclipse may be viewed from anywhere on the night side of Earth. Occurring about 3 days after perigee (on May 12, 1984, at 4:05 UTC), the Moon's apparent diameter was larger.[2]

Quick Facts Date, Gamma ...
Remove ads
Remove ads

Visibility

The eclipse was completely visible over much of North America, South America, and Antarctica, seen rising over northwestern North America and the central Pacific Ocean and setting over Africa and much of Europe.[3]

Thumb Thumb

Eclipse details

Shown below is a table displaying details about this particular solar eclipse. It describes various parameters pertaining to this eclipse.[4]

More information Parameter, Value ...
Remove ads

Eclipse season

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight. The first and last eclipse in this sequence is separated by one synodic month.

More information May 15Descending node (full moon), May 30Ascending node (new moon) ...
Summarize
Perspective

Eclipses in 1984

Metonic

Tzolkinex

Half-Saros

Tritos

Lunar Saros 111

Inex

Triad

  • Preceded by: Lunar eclipse of July 14, 1897
  • Followed by: Lunar eclipse of March 16, 2071

Lunar eclipses of 1984–1987

This eclipse is a member of a semester series. An eclipse in a semester series of lunar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[5]

The penumbral lunar eclipse on June 13, 1984 occurs in the previous lunar year eclipse set.

More information Lunar eclipse series sets from 1984 to 1987, Descending node ...

Metonic series

The Metonic cycle repeats nearly exactly every 19 years and represents a Saros cycle plus one lunar year. Because it occurs on the same calendar date, the Earth's shadow will be in nearly the same location relative to the background stars.

  1. 1984 May 15.19 - penumbral (111)
  2. 2003 May 16.15 - total (121)
  3. 2022 May 16.17 - total (131)
  4. 2041 May 16.03 - penumbral (141)
  1. 1984 Nov 08.75 - penumbral (116)
  2. 2003 Nov 09.05 - total (126)
  3. 2022 Nov 08.46 - total (136)
  4. 2041 Nov 08.19 - partial (146)
  5. 2060 Nov 08.17 - penumbral (156)
Thumb Thumb

Saros 111

This eclipse is a part of Saros series 111, repeating every 18 years, 11 days, and containing 71 events. The series started with a penumbral lunar eclipse on June 10, 830 AD. It contains partial eclipses from September 14, 992 AD through April 8, 1335; total eclipses from April 19, 1353 through August 4, 1533; and a second set of partial eclipses from August 16, 1551 through April 23, 1948. The series ends at member 71 as a penumbral eclipse on July 19, 2092.

The longest duration of totality was produced by member 35 at 106 minutes, 14 seconds on June 12, 1443. All eclipses in this series occur at the Moon’s descending node of orbit.[6]

More information Greatest, First ...

Eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

More information Series members 55–71 occur between 1801 and 2092: ...

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

More information Series members between 1886 and 2200 ...

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

More information Series members between 1801 and 2200 ...

Half-Saros cycle

A lunar eclipse will be preceded and followed by solar eclipses by 9 years and 5.5 days (a half saros).[8] This lunar eclipse is related to two partial solar eclipses of Solar Saros 118.

May 11, 1975 May 21, 1993
Thumb Thumb
Remove ads

See also

Notes

Loading content...
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads