Top Qs
Timeline
Chat
Perspective

August 1942 lunar eclipse

Total lunar eclipse August 26, 1942 From Wikipedia, the free encyclopedia

August 1942 lunar eclipse
Remove ads

A total lunar eclipse occurred at the Moon’s descending node of orbit on Wednesday, August 26, 1942,[1] with an umbral magnitude of 1.5344. It was a central lunar eclipse, in which part of the Moon passed through the center of the Earth's shadow. A lunar eclipse occurs when the Moon moves into the Earth's shadow, causing the Moon to be darkened. A total lunar eclipse occurs when the Moon's near side entirely passes into the Earth's umbral shadow. Unlike a solar eclipse, which can only be viewed from a relatively small area of the world, a lunar eclipse may be viewed from anywhere on the night side of Earth. A total lunar eclipse can last up to nearly two hours, while a total solar eclipse lasts only a few minutes at any given place, because the Moon's shadow is smaller. Occurring about 2.7 days after perigee (on August 23, 1942, at 9:50 UTC), the Moon's apparent diameter was larger.[2]

Quick Facts Date, Gamma ...
Remove ads

Visibility

The eclipse was completely visible over eastern North America, South America, west Africa, and Antarctica, seen rising over western North America and the eastern Pacific Ocean and setting over Africa, Europe, and the Middle East.[3]

Thumb Thumb

Eclipse details

Shown below is a table displaying details about this particular solar eclipse. It describes various parameters pertaining to this eclipse.[4]

More information Parameter, Value ...
Remove ads

Eclipse season

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight. The first and last eclipse in this sequence is separated by one synodic month.

More information August 12 Ascending node (new moon), August 26 Descending node (full moon) ...
Summarize
Perspective

Eclipses in 1942

Metonic

Tzolkinex

Half-Saros

Tritos

Lunar Saros 127

Inex

Triad

Lunar eclipses of 1940–1944

This eclipse is a member of a semester series. An eclipse in a semester series of lunar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[5]

The penumbral lunar eclipses on April 22, 1940 and October 16, 1940 occur in the previous lunar year eclipse set, and the penumbral lunar eclipses on July 6, 1944 and December 29, 1944 occur in the next lunar year eclipse set.

More information Lunar eclipse series sets from 1940 to 1944, Ascending node ...

Saros 127

This eclipse is a part of Saros series 127, repeating every 18 years, 11 days, and containing 72 events. The series started with a penumbral lunar eclipse on July 9, 1275. It contains partial eclipses from November 4, 1473 through May 18, 1780; total eclipses from May 29, 1798 through November 9, 2068; and a second set of partial eclipses from November 20, 2086 through June 17, 2429. The series ends at member 72 as a penumbral eclipse on September 2, 2555.

The longest duration of totality was produced by member 35 at 101 minutes, 46 seconds on July 23, 1888. All eclipses in this series occur at the Moon’s descending node of orbit.[6]

More information Greatest, First ...

Eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

More information Series members 31–52 occur between 1801 and 2200: ...

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

More information Series members between 1801 and 2200 ...

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

More information Series members between 1801 and 2200 ...

Half-Saros cycle

A lunar eclipse will be preceded and followed by solar eclipses by 9 years and 5.5 days (a half saros).[8] This lunar eclipse is related to two total solar eclipses of Solar Saros 134.

More information September 1, 1951 ...
Remove ads

See also

References

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads