Top Qs
Timeline
Chat
Perspective

July 1953 lunar eclipse

Total lunar eclipse July 26, 1953 From Wikipedia, the free encyclopedia

July 1953 lunar eclipse
Remove ads

A total lunar eclipse occurred at the Moon’s ascending node of orbit on Sunday, July 26, 1953,[1] with an umbral magnitude of 1.8629. It was a central lunar eclipse, in which part of the Moon passed through the center of the Earth's shadow. A lunar eclipse occurs when the Moon moves into the Earth's shadow, causing the Moon to be darkened. A total lunar eclipse occurs when the Moon's near side entirely passes into the Earth's umbral shadow. Unlike a solar eclipse, which can only be viewed from a relatively small area of the world, a lunar eclipse may be viewed from anywhere on the night side of Earth. A total lunar eclipse can last up to nearly two hours, while a total solar eclipse lasts only a few minutes at any given place, because the Moon's shadow is smaller. Occurring about 2.1 days before perigee (on July 28, 1953, at 14:45 UTC), the Moon's apparent diameter was larger.[2]

Quick Facts Date, Gamma ...

With an umbral lunar eclipse magnitude of 1.8629, this was the largest lunar eclipse of the 20th century, larger than any since 1765 and until 2264.[3]:150 Gamma had a value of only −0.0071. Due to the Moon's relatively large size, totality lasted 100 minutes and 42 seconds unlike July 16, 2000, which lasted 106 minutes and 25 seconds, the longest since August 13, 1859 (which was only 3 seconds longer). This was the darkest total lunar eclipse in the 20th century.

Remove ads

Visibility

The eclipse was completely visible over Australia, Antarctica, and much of the Pacific Ocean, seen rising over much of Asia and setting over North and South America.[4]

Thumb Thumb

Eclipse details

Shown below is a table displaying details about this particular solar eclipse. It describes various parameters pertaining to this eclipse.[5]

More information Parameter, Value ...
Remove ads

Eclipse season

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.

More information July 11Descending node (new moon), July 26 Ascending node (full moon) ...
Summarize
Perspective

Eclipses in 1953

Metonic

Tzolkinex

Half-Saros

Tritos

Lunar Saros 128

Inex

Triad

Lunar eclipses of 1951–1955

This eclipse is a member of a semester series. An eclipse in a semester series of lunar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[6]

The penumbral lunar eclipses on March 23, 1951 and September 15, 1951 occur in the previous lunar year eclipse set, and the lunar eclipses on June 5, 1955 (penumbral) and November 29, 1955 (partial) occur in the next lunar year eclipse set.

More information Lunar eclipse series sets from 1951 to 1955, Descending node ...

Saros 128

This eclipse is a part of Saros series 128, repeating every 18 years, 11 days, and containing 71 events. The series started with a penumbral lunar eclipse on June 18, 1304. It contains partial eclipses from September 2, 1430 through May 11, 1827; total eclipses from May 21, 1845 through October 21, 2097; and a second set of partial eclipses from November 2, 2115 through May 17, 2440. The series ends at member 71 as a penumbral eclipse on August 2, 2566.

The longest duration of totality was produced by member 37 at 100 minutes, 43 seconds on July 26, 1953. All eclipses in this series occur at the Moon’s ascending node of orbit.[7]

More information Greatest, First ...

Eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

More information Series members 29–50 occur between 1801 and 2200: ...

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

More information Series members between 1801 and 2200 ...

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

More information Series members between 1801 and 2200 ...

Half-Saros cycle

A lunar eclipse will be preceded and followed by solar eclipses by 9 years and 5.5 days (a half saros).[9] This lunar eclipse is related to two annular solar eclipses of Solar Saros 135.

July 20, 1944 July 31, 1962
Thumb Thumb
Remove ads

See also

Notes

References

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads