Top Qs
Timeline
Chat
Perspective

February 2008 lunar eclipse

Total lunar eclipse of 20 February 2008 From Wikipedia, the free encyclopedia

February 2008 lunar eclipse
Remove ads

A total lunar eclipse occurred at the Moon’s descending node of orbit on Thursday, February 21, 2008,[1] with an umbral magnitude of 1.1081. A lunar eclipse occurs when the Moon moves into the Earth's shadow, causing the Moon to be darkened. A total lunar eclipse occurs when the Moon's near side entirely passes into the Earth's umbral shadow. Unlike a solar eclipse, which can only be viewed from a relatively small area of the world, a lunar eclipse may be viewed from anywhere on the night side of Earth. A total lunar eclipse can last up to nearly two hours, while a total solar eclipse lasts only a few minutes at any given place, because the Moon's shadow is smaller. The Moon's apparent diameter was near the average diameter because it occurred 7.2 days after perigee (on February 13, 2008, at 20:00 UTC) and 6.8 days before apogee (on February 27, 2008, at 20:30 UTC).[2]

Quick Facts Date, Gamma ...
Remove ads
Remove ads

Visibility

The eclipse was completely visible over North and South America, west Africa, and western Europe, seen rising over much of the Pacific Ocean and setting over much of Africa, eastern Europe, and west, central, and south Asia.[3]

The bright star Regulus of Leo and the planet Saturn were prominent very near the Moon during the total eclipse portion. Shortly before the eclipse began, Regulus was occulted by the Moon in parts of the far Southern Atlantic Ocean and Antarctica.

Thumb Thumb
Hourly motion shown right to left
Thumb
The Moon's hourly motion across the Earth's shadow in the constellation of Leo.
Thumb
Visibility map
Remove ads

Timing

The Moon entered the penumbral shadow at 0:36 UTC, and the umbral shadow at 1:43. Totality lasted for 50 minutes, between 3:01 and 3:51. The Moon left the umbra shadow at 5:09 and left the penumbra shadow at 6:16.[4]

More information Event, North and South America ...
Remove ads

Images

Thumb
These simulated views of the Earth from the center of the Moon during the lunar eclipse show where the eclipse is visible on Earth.
Thumb
NASA chart of the eclipse

Composites

Thumb
Eclipse observed from Sandim, Portugal. 41°02′22″N 8°30′50″W.
Thumb
Eclipse observed from Regina, Saskatchewan. Each image is roughly taken 5 minutes apart.
Thumb
Images taken in 3-5 minute Intervals - from Bradley, Illinois.
Thumb
Eclipse observed from Halton Hills, Ontario. From 01:47 to 03:15 UTC, each image is roughly taken 5min apart.

Eclipse observed from Winnipeg, Manitoba

Lunar eclipse observed from Burlington, Ontario
Thumb
Observed from Baltimore, Maryland, from 2:30 to 3:01 UTC. Lunar north is near left.

North America

Canada

USA (west)

USA (east)

South America

Europe and Africa

Remove ads

Eclipse details

Shown below is a table displaying details about this particular lunar eclipse. It describes various parameters pertaining to this eclipse.[6]

More information Parameter, Value ...
Remove ads

Eclipse season

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.

More information February 7Ascending node (new moon), February 21Descending node (full moon) ...
Remove ads
Summarize
Perspective

Eclipses in 2008

Metonic

Tzolkinex

Half-Saros

Tritos

Lunar Saros 133

Inex

Triad

Lunar eclipses of 2006–2009

This eclipse is a member of a semester series. An eclipse in a semester series of lunar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[7]

The lunar eclipses on July 7, 2009 (penumbral) and December 31, 2009 (partial) occur in the next lunar year eclipse set.

More information Lunar eclipse series sets from 2006 to 2009, Descending node ...

Metonic series

The Metonic cycle repeats nearly exactly every 19 years and represents a Saros cycle plus one lunar year. Because it occurs on the same calendar date, the Earth's shadow will in nearly the same location relative to the background stars.

More information Descending node, Ascending node ...

Saros 133

This eclipse is a part of Saros series 133, repeating every 18 years, 11 days, and containing 71 events. The series started with a penumbral lunar eclipse on May 13, 1557. It contains partial eclipses from August 7, 1683 through December 17, 1899; total eclipses from December 28, 1917 through August 3, 2278; and a second set of partial eclipses from August 14, 2296 through March 11, 2639. The series ends at member 71 as a penumbral eclipse on June 29, 2819.

The longest duration of totality will be produced by member 35 at 101 minutes, 41 seconds on May 30, 2170. All eclipses in this series occur at the Moon’s descending node of orbit.[8]

More information Greatest, First ...

Eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

More information Series members 15–36 occur between 1801 and 2200: ...

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

More information Series members between 1801 and 2200 ...

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

More information Series members between 1801 and 2200 ...

Half-Saros cycle

A lunar eclipse will be preceded and followed by solar eclipses by 9 years and 5.5 days (a half saros).[10] This lunar eclipse is related to two annular solar eclipses of Solar Saros 140.

February 16, 1999 February 26, 2017
Thumb Thumb
Remove ads

See also

Notes

Loading content...
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads