Comparison of deep learning software

Tabular comparison of deep learning software From Wikipedia, the free encyclopedia

The following tables compare notable software frameworks, libraries, and computer programs for deep learning applications.

Deep learning software by name

More information Software, Creator ...
Software Creator Initial release Software license[a]
Open source
Platform Written in Interface OpenMP support OpenCL support CUDA support
ROCm support[1]
Automatic differentiation[2] Has pretrained models
Parallel execution
(multi node)
Actively developed
BigDL Jason Dai (Intel) 2016 Apache 2.0 Yes Apache Spark Scala Scala, Python No No Yes Yes Yes Yes
Caffe Berkeley Vision and Learning Center 2013 BSD Yes Linux, macOS, Windows[3] C++ Python, MATLAB, C++ Yes Under development[4] Yes No Yes Yes[5] Yes Yes No  ? No[6]
Chainer Preferred Networks 2015 BSD Yes Linux, macOS Python Python No No Yes No Yes Yes Yes Yes No Yes No[7]
Deeplearning4j Skymind engineering team; Deeplearning4j community; originally Adam Gibson 2014 Apache 2.0 Yes Linux, macOS, Windows, Android (Cross-platform) C++, Java Java, Scala, Clojure, Python (Keras), Kotlin Yes No[8] Yes[9][10] No Computational Graph Yes[11] Yes Yes Yes Yes[12] Yes
Dlib Davis King 2002 Boost Software License Yes Cross-platform C++ C++, Python Yes No Yes No Yes Yes No Yes Yes Yes Yes
Flux Mike Innes 2017 MIT license Yes Linux, MacOS, Windows (Cross-platform) Julia Julia Yes No Yes Yes[13] Yes Yes No Yes Yes
Intel Data Analytics Acceleration Library Intel 2015 Apache License 2.0 Yes Linux, macOS, Windows on Intel CPU[14] C++, Python, Java C++, Python, Java[14] Yes No No No Yes No Yes Yes Yes
Intel Math Kernel Library 2017 [15] and later Intel 2017 Proprietary No Linux, macOS, Windows on Intel CPU[16] C/C++, DPC++, Fortran C[17] Yes[18] No No No Yes No Yes[19] Yes[19] No Yes
Google JAX Google 2018 Apache License 2.0 Yes Linux, macOS, Windows Python Python Only on Linux No Yes No Yes Yes
Keras François Chollet 2015 MIT license Yes Linux, macOS, Windows Python Python, R Only if using Theano as backend Can use Theano, Tensorflow or PlaidML as backends Yes No Yes Yes[20] Yes Yes No[21] Yes[22] Yes
MATLAB + Deep Learning Toolbox (formally Neural Network Toolbox) MathWorks 1992 Proprietary No Linux, macOS, Windows C, C++, Java, MATLAB MATLAB No No Train with Parallel Computing Toolbox and generate CUDA code with GPU Coder[23] No Yes[24] Yes[25][26] Yes[25] Yes[25] Yes With Parallel Computing Toolbox[27] Yes
Microsoft Cognitive Toolkit (CNTK) Microsoft Research 2016 MIT license[28] Yes Windows, Linux[29] (macOS via Docker on roadmap) C++ Python (Keras), C++, Command line,[30] BrainScript[31] (.NET on roadmap[32]) Yes[33] No Yes No Yes Yes[34] Yes[35] Yes[35] No[36] Yes[37] No[38]
ML.NET Microsoft 2018 MIT license Yes Windows, Linux, macOS C#, C++ C#, F# Yes
Apache MXNet Apache Software Foundation 2015 Apache 2.0 Yes Linux, macOS, Windows,[39][40] AWS, Android,[41] iOS, JavaScript[42] Small C++ core library C++, Python, Julia, MATLAB, JavaScript, Go, R, Scala, Perl, Clojure Yes No Yes No Yes[43] Yes[44] Yes Yes Yes Yes[45] No
Neural Designer Artelnics 2014 Proprietary No Linux, macOS, Windows C++ Graphical user interface Yes No Yes No Analytical differentiation No No No No Yes Yes
OpenNN Artelnics 2003 GNU LGPL Yes Cross-platform C++ C++ Yes No Yes No  ?  ? No No No  ? Yes
PlaidML Vertex.AI, Intel 2017 Apache 2.0 Yes Linux, macOS, Windows Python, C++, OpenCL Python, C++  ? Some OpenCL ICDs are not recognized No No Yes Yes Yes Yes Yes Yes
PyTorch Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan (Facebook) 2016 BSD Yes Linux, macOS, Windows, Android[46] Python, C, C++, CUDA Python, C++, Julia, R[47] Yes Via separately maintained package[48][49][50] Yes Yes Yes Yes Yes Yes Yes[51] Yes Yes
Apache SINGA Apache Software Foundation 2015 Apache 2.0 Yes Linux, macOS, Windows C++ Python, C++, Java No Supported in V1.0 Yes No  ? Yes Yes Yes Yes Yes Yes
TensorFlow Google Brain 2015 Apache 2.0 Yes Linux, macOS, Windows,[52][53] Android C++, Python, CUDA Python (Keras), C/C++, Java, Go, JavaScript, R,[54] Julia, Swift No On roadmap[55] but already with SYCL[56] support Yes Yes Yes[57] Yes[58] Yes Yes Yes Yes Yes
Theano Université de Montréal 2007 BSD Yes Cross-platform Python Python (Keras) Yes Under development[59] Yes No Yes[60][61] Through Lasagne's model zoo[62] Yes Yes Yes Yes[63] No
Torch Ronan Collobert, Koray Kavukcuoglu, Clement Farabet 2002 BSD Yes Linux, macOS, Windows,[64] Android,[65] iOS C, Lua Lua, LuaJIT,[66] C, utility library for C++/OpenCL[67] Yes Third party implementations[68][69] Yes[70][71] No Through Twitter's Autograd[72] Yes[73] Yes Yes Yes Yes[64] No
Wolfram Mathematica 10[74] and later Wolfram Research 2014 Proprietary No Windows, macOS, Linux, Cloud computing C++, Wolfram Language, CUDA Wolfram Language Yes No Yes No Yes Yes[75] Yes Yes Yes Yes[76] Yes
Software Creator Initial release Software license[a]
Open source
Platform Written in Interface OpenMP support OpenCL support CUDA support
ROCm support[77]
Automatic differentiation[2] Has pretrained models
Parallel execution
(multi node)
Actively developed
Close
  1. Licenses here are a summary, and are not taken to be complete statements of the licenses. Some libraries may use other libraries internally under different licenses

Comparison of machine learning model compatibility

[further explanation needed]

More information Format name, Design goal ...
Format name Design goal Compatible with other formats Self-contained DNN Model Pre-processing and Post-processing Run-time configuration for tuning & calibration DNN model interconnect Common platform
TensorFlow, Keras, Caffe, Torch Algorithm training No No / Separate files in most formats No No No Yes
ONNX Algorithm training Yes No / Separate files in most formats No No No Yes
Close

See also

References

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.