Top Qs
Timeline
Chat
Perspective

June 2048 lunar eclipse

Astronomical event From Wikipedia, the free encyclopedia

June 2048 lunar eclipse
Remove ads

A partial lunar eclipse will occur at the Moon’s ascending node of orbit on Friday, June 26, 2048,[1] with an umbral magnitude of 0.6404. A lunar eclipse occurs when the Moon moves into the Earth's shadow, causing the Moon to be darkened. A partial lunar eclipse occurs when one part of the Moon is in the Earth's umbra, while the other part is in the Earth's penumbra. Unlike a solar eclipse, which can only be viewed from a relatively small area of the world, a lunar eclipse may be viewed from anywhere on the night side of Earth. Occurring only about 21 hours after perigee (on June 25, 2048, at 5:50 UTC), the Moon's apparent diameter will be larger.[2]

Quick Facts Date, Gamma ...
Remove ads

Visibility

The eclipse will be completely visible over South America, west and southern Africa, and Antarctica, seen rising over much of North America and setting over Europe, east Africa, and west, central, and south Asia.[3]

Thumb Thumb

Eclipse details

Shown below is a table displaying details about this particular lunar eclipse. It describes various parameters pertaining to this eclipse.[4]

More information Parameter, Value ...
Remove ads

Eclipse season

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.

More information June 11Descending node (new moon), June 26Ascending node (full moon) ...
Summarize
Perspective

Eclipses in 2048

Metonic

Tzolkinex

Half-Saros

Tritos

Lunar Saros 140

Inex

Triad

Lunar eclipses of 2046–2049

This eclipse is a member of a semester series. An eclipse in a semester series of lunar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[5]

The penumbral lunar eclipses on May 17, 2049 and November 9, 2049 occur in the next lunar year eclipse set.

More information Lunar eclipse series sets from 2046 to 2049, Descending node ...

Saros 140

This eclipse is a part of Saros series 140, repeating every 18 years, 11 days, and containing 77 events. The series started with a penumbral lunar eclipse on September 25, 1597. It contains partial eclipses from May 3, 1958 through July 17, 2084; total eclipses from July 30, 2102 through May 21, 2589; and a second set of partial eclipses from June 2, 2607 through August 7, 2715. The series ends at member 77 as a penumbral eclipse on January 6, 2968.

The longest duration of totality will be produced by member 38 at 98 minutes, 36 seconds on November 4, 2264. All eclipses in this series occur at the Moon’s ascending node of orbit.[6]

More information Greatest, First ...

Eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

More information Series members 13–34 occur between 1801 and 2200: ...

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

More information Series members between 1801 and 2200 ...

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

More information Series members between 1801 and 2200 ...

Half-Saros cycle

A lunar eclipse will be preceded and followed by solar eclipses by 9 years and 5.5 days (a half saros).[8] This lunar eclipse is related to two annular solar eclipses of Solar Saros 147.

More information July 1, 2057 ...
Remove ads

See also

Notes

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads