Top Qs
Timeline
Chat
Perspective

April 1950 lunar eclipse

Total lunar eclipse April 2, 1950 From Wikipedia, the free encyclopedia

April 1950 lunar eclipse
Remove ads

A total lunar eclipse occurred at the Moon’s descending node of orbit on Sunday, April 2, 1950,[1] with an umbral magnitude of 1.0329. A lunar eclipse occurs when the Moon moves into the Earth's shadow, causing the Moon to be darkened. A total lunar eclipse occurs when the Moon's near side entirely passes into the Earth's umbral shadow. Unlike a solar eclipse, which can only be viewed from a relatively small area of the world, a lunar eclipse may be viewed from anywhere on the night side of Earth. A total lunar eclipse can last up to nearly two hours, while a total solar eclipse lasts only a few minutes at any given place, because the Moon's shadow is smaller. Occurring only about 23 hours before perigee (on April 3, 1950, at 20:00 UTC), the Moon's apparent diameter was larger.[2]

Quick Facts Date, Gamma ...
Remove ads

This lunar eclipse was the third of a tetrad, with four total lunar eclipses in series, the others being on April 13, 1949; October 7, 1949; and September 26, 1950.

This was the first total lunar eclipse of Lunar Saros 131.

Remove ads

Visibility

The eclipse was completely visible over much of Africa, Europe, and the western half of Asia, seen rising over South America and setting over east and northeast Asia and Australia.[3]

Thumb Thumb

Eclipse details

Shown below is a table displaying details about this particular solar eclipse. It describes various parameters pertaining to this eclipse.[4]

More information Parameter, Value ...
Remove ads

Eclipse season

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.

More information March 18 Ascending node (new moon), April 2 Descending node (full moon) ...
Summarize
Perspective

Eclipses in 1950

Metonic

Tzolkinex

Half-Saros

Tritos

Lunar Saros 131

Inex

Triad

Lunar eclipses of 1948–1951

This eclipse is a member of a semester series. An eclipse in a semester series of lunar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[5]

The penumbral lunar eclipses on February 21, 1951 and August 17, 1951 occur in the next lunar year eclipse set.

More information Lunar eclipse series sets from 1948 to 1951, Descending node ...

Saros 131

This eclipse is a part of Saros series 131, repeating every 18 years, 11 days, and containing 72 events. The series started with a penumbral lunar eclipse on May 10, 1427. It contains partial eclipses from July 25, 1553 through March 22, 1932; total eclipses from April 2, 1950 through September 3, 2202; and a second set of partial eclipses from September 13, 2220 through April 9, 2563. The series ends at member 72 as a penumbral eclipse on July 7, 2707.

The longest duration of totality will be produced by member 38 at 100 minutes, 36 seconds on June 28, 2094. All eclipses in this series occur at the Moon’s descending node of orbit.[6]

More information Greatest, First ...

Eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

More information Series members 22–43 occur between 1801 and 2200: ...

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

More information Series members between 1801 and 2200 ...

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

More information Series members between 1801 and 2200 ...

Half-Saros cycle

A lunar eclipse will be preceded and followed by solar eclipses by 9 years and 5.5 days (a half saros).[8] This lunar eclipse is related to two total solar eclipses of Solar Saros 138.

More information March 27, 1941 ...
Remove ads

See also

Notes

Loading content...
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads