Top Qs
Timeline
Chat
Perspective

September 1932 lunar eclipse

Partial lunar eclipse September 14, 1932 From Wikipedia, the free encyclopedia

September 1932 lunar eclipse
Remove ads

A partial lunar eclipse occurred at the Moon’s ascending node of orbit on Wednesday, September 14, 1932,[1] with an umbral magnitude of 0.9752. A lunar eclipse occurs when the Moon moves into the Earth's shadow, causing the Moon to be darkened. A partial lunar eclipse occurs when one part of the Moon is in the Earth's umbra, while the other part is in the Earth's penumbra. Unlike a solar eclipse, which can only be viewed from a relatively small area of the world, a lunar eclipse may be viewed from anywhere on the night side of Earth. Occurring about 4.8 days before apogee (on September 19, 1932, at 17:00 UTC), the Moon's apparent diameter was smaller.[2]

Quick Facts Date, Gamma ...
Remove ads

This was the last of the first set of partial lunar eclipses in Lunar Saros 136, preceding the first total eclipse on September 26, 1950.

Remove ads

Visibility

The eclipse was completely visible over much of Africa, Europe, and west, central, and south Asia, seen rising over west Africa, South America, and eastern North America and setting over east and northeast Asia and Australia.[3]

Thumb Thumb

Eclipse details

Shown below is a table displaying details about this particular solar eclipse. It describes various parameters pertaining to this eclipse.[4]

More information Parameter, Value ...
Remove ads

Eclipse season

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.

More information August 31 Descending node (new moon), September 14 Ascending node (full moon) ...
Summarize
Perspective

Eclipses in 1932

Metonic

Tzolkinex

Half-Saros

Tritos

Lunar Saros 136

Inex

Triad

Lunar eclipses of 1930–1933

This eclipse is a member of a semester series. An eclipse in a semester series of lunar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[5]

The penumbral lunar eclipses on February 10, 1933 and August 5, 1933 occur in the next lunar year eclipse set.

More information Lunar eclipse series sets from 1930 to 1933, Descending node ...

Saros 136

This eclipse is a part of Saros series 136, repeating every 18 years, 11 days, and containing 72 events. The series started with a penumbral lunar eclipse on April 13, 1680. It contains partial eclipses from July 11, 1824 through September 14, 1932; total eclipses from September 26, 1950 through July 7, 2419; and a second set of partial eclipses from July 18, 2437 through October 3, 2563. The series ends at member 72 as a penumbral eclipse on June 1, 2960.

The longest duration of totality will be produced by member 35 at 101 minutes, 23 seconds on April 21, 2293. All eclipses in this series occur at the Moon’s ascending node of orbit.[6]

More information Greatest, First ...

Eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

More information Series members 8–29 occur between 1801 and 2200: ...

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

More information Series members between 1801 and 2183 ...

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

More information Series members between 1801 and 2200 ...

Half-Saros cycle

A lunar eclipse will be preceded and followed by solar eclipses by 9 years and 5.5 days (a half saros).[8] This lunar eclipse is related to two total solar eclipses of Solar Saros 143.

September 10, 1923 September 21, 1941
Thumb Thumb
Remove ads

See also

References

Loading content...
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads