Top Qs
Timeline
Chat
Perspective
June 2076 lunar eclipse
Central lunar eclipse From Wikipedia, the free encyclopedia
Remove ads
A total lunar eclipse will occur at the Moon’s descending node of orbit on Wednesday, June 17, 2076,[1] with an umbral magnitude of 1.7959. It will be a central lunar eclipse, in which part of the Moon will pass through the center of the Earth's shadow. A lunar eclipse occurs when the Moon moves into the Earth's shadow, causing the Moon to be darkened. A total lunar eclipse occurs when the Moon's near side entirely passes into the Earth's umbral shadow. Unlike a solar eclipse, which can only be viewed from a relatively small area of the world, a lunar eclipse may be viewed from anywhere on the night side of Earth. A total lunar eclipse can last up to nearly two hours, while a total solar eclipse lasts only a few minutes at any given place, because the Moon's shadow is smaller. Occurring about 1.9 days before perigee (on June 18, 2076, at 20:40 UTC), the Moon's apparent diameter will be larger.[2]
Remove ads
While the visual effect of a total eclipse is variable, the Moon may be stained a deep orange or red color at maximum eclipse. With a gamma value of only −0.0452 and an umbral eclipse magnitude of 1.7959, this is the second greatest eclipse in Saros series 131 as well as the largest and darkest lunar eclipse between June 26, 2029 and June 28, 2094. Overall, it will be the third largest and darkest lunar eclipse of the 21st century. While it will have similar values to the lunar eclipse of July 16, 2000, totality will not last over 106 minutes due to the moon's relatively large apparent size as seen from Earth and greater speed in its elliptical orbit.
NGC 6401 will be occulted by the Moon during the eclipse over Eastern North America, Cuba, the Atlantic Ocean, Southeast Europe and the northern half of Africa.[3]: 160
Remove ads
Visibility
The eclipse will be completely visible over South America, west Africa, and Antarctica, seen rising over North America and the eastern Pacific Ocean and setting over Europe, west and south Asia, and central and east Africa.[4]
![]() ![]() |
Eclipse details
Shown below is a table displaying details about this particular solar eclipse. It describes various parameters pertaining to this eclipse.[5]
Remove ads
Eclipse season
This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight. The first and last eclipse in this sequence is separated by one synodic month.
Related eclipses
Summarize
Perspective
Eclipses in 2076
- A total solar eclipse on January 6.
- A partial solar eclipse on June 1.
- A total lunar eclipse on June 17.
- A partial solar eclipse on July 1.
- A partial solar eclipse on November 26.
- A total lunar eclipse on December 10.
Metonic
- Preceded by: Lunar eclipse of August 28, 2072
- Followed by: Lunar eclipse of April 4, 2080
Tzolkinex
- Preceded by: Lunar eclipse of May 6, 2069
- Followed by: Lunar eclipse of July 29, 2083
Half-Saros
- Preceded by: Solar eclipse of June 11, 2067
- Followed by: Solar eclipse of June 22, 2085
Tritos
- Preceded by: Lunar eclipse of July 17, 2065
- Followed by: Lunar eclipse of May 17, 2087
Lunar Saros 131
- Preceded by: Lunar eclipse of June 6, 2058
- Followed by: Lunar eclipse of June 28, 2094
Inex
- Preceded by: Lunar eclipse of July 7, 2047
- Followed by: Lunar eclipse of May 28, 2105
Triad
- Preceded by: Lunar eclipse of August 16, 1989
- Followed by: Lunar eclipse of April 19, 2163
Lunar eclipses of 2074–2078
This eclipse is a member of a semester series. An eclipse in a semester series of lunar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[6]
The penumbral lunar eclipses on February 11, 2074 and August 7, 2074 occur in the previous lunar year eclipse set, and the penumbral lunar eclipses on April 27, 2078 and October 21, 2078 occur in the next lunar year eclipse set.
Saros 131
This eclipse is a part of Saros series 131, repeating every 18 years, 11 days, and containing 72 events. The series started with a penumbral lunar eclipse on May 10, 1427. It contains partial eclipses from July 25, 1553 through March 22, 1932; total eclipses from April 2, 1950 through September 3, 2202; and a second set of partial eclipses from September 13, 2220 through April 9, 2563. The series ends at member 72 as a penumbral eclipse on July 7, 2707.
The longest duration of totality will be produced by member 38 at 100 minutes, 36 seconds on June 28, 2094. All eclipses in this series occur at the Moon’s descending node of orbit.[7]
Eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.
Tritos series
This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.
Inex series
This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.
Half-Saros cycle
A lunar eclipse will be preceded and followed by solar eclipses by 9 years and 5.5 days (a half saros).[9] This lunar eclipse is related to two annular solar eclipses of Solar Saros 138.
June 11, 2067 | June 22, 2085 |
---|---|
![]() |
![]() |
Remove ads
See also
Notes
External links
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads