Loading AI tools
Generalized sphere of dimension n (mathematics) From Wikipedia, the free encyclopedia
In mathematics, an n-sphere or hypersphere is an -dimensional generalization of the -dimensional circle and -dimensional sphere to any non-negative integer . The circle is considered 1-dimensional, and the sphere 2-dimensional, because the surfaces themselves are 1- and 2-dimensional respectively, not because they exist as shapes in 1- and 2-dimensional space. As such, the -sphere is the setting for -dimensional spherical geometry.
Considered extrinsically, as a hypersurface embedded in -dimensional Euclidean space, an -sphere is the locus of points at equal distance (the radius) from a given center point. Its interior, consisting of all points closer to the center than the radius, is an -dimensional ball. In particular:
Given a Cartesian coordinate system, the unit -sphere of radius can be defined as:
Considered intrinsically, when , the -sphere is a Riemannian manifold of positive constant curvature, and is orientable. The geodesics of the -sphere are called great circles.
The stereographic projection maps the -sphere onto -space with a single adjoined point at infinity; under the metric thereby defined, is a model for the -sphere.
In the more general setting of topology, any topological space that is homeomorphic to the unit -sphere is called an -sphere. Under inverse stereographic projection, the -sphere is the one-point compactification of -space. The -spheres admit several other topological descriptions: for example, they can be constructed by gluing two -dimensional spaces together, by identifying the boundary of an -cube with a point, or (inductively) by forming the suspension of an -sphere. When it is simply connected; the -sphere (circle) is not simply connected; the -sphere is not even connected, consisting of two discrete points.
For any natural number , an -sphere of radius is defined as the set of points in -dimensional Euclidean space that are at distance from some fixed point , where may be any positive real number and where may be any point in -dimensional space. In particular:
The set of points in -space, , that define an -sphere, , is represented by the equation:
where is a center point, and is the radius.
The above -sphere exists in -dimensional Euclidean space and is an example of an -manifold. The volume form of an -sphere of radius is given by
where is the Hodge star operator; see Flanders (1989, §6.1) for a discussion and proof of this formula in the case . As a result,
The space enclosed by an -sphere is called an -ball. An -ball is closed if it includes the -sphere, and it is open if it does not include the -sphere.
Specifically:
Topologically, an -sphere can be constructed as a one-point compactification of -dimensional Euclidean space. Briefly, the -sphere can be described as , which is -dimensional Euclidean space plus a single point representing infinity in all directions. In particular, if a single point is removed from an -sphere, it becomes homeomorphic to . This forms the basis for stereographic projection.[1]
Let be the surface area of the unit -sphere of radius embedded in -dimensional Euclidean space, and let be the volume of its interior, the unit -ball. The surface area of an arbitrary -sphere is proportional to the st power of the radius, and the volume of an arbitrary -ball is proportional to the th power of the radius.
The -ball is sometimes defined as a single point. The -dimensional Hausdorff measure is the number of points in a set. So
A unit -ball is a line segment whose points have a single coordinate in the interval of length , and the -sphere consists of its two end-points, with coordinate .
A unit -sphere is the unit circle in the Euclidean plane, and its interior is the unit disk (-ball).
The interior of a 2-sphere in three-dimensional space is the unit -ball.
In general, and are given in closed form by the expressions
where is the gamma function.
As tends to infinity, the volume of the unit -ball (ratio between the volume of an -ball of radius and an -cube of side length ) tends to zero.[2]
The surface area, or properly the -dimensional volume, of the -sphere at the boundary of the -ball of radius is related to the volume of the ball by the differential equation
Equivalently, representing the unit -ball as a union of concentric -sphere shells,
We can also represent the unit -sphere as a union of products of a circle (-sphere) with an -sphere. Then . Since , the equation
holds for all . Along with the base cases , from above, these recurrences can be used to compute the surface area of any sphere or volume of any ball.
We may define a coordinate system in an -dimensional Euclidean space which is analogous to the spherical coordinate system defined for -dimensional Euclidean space, in which the coordinates consist of a radial coordinate , and angular coordinates , where the angles range over radians (or degrees) and ranges over radians (or degrees). If are the Cartesian coordinates, then we may compute from with:[3][a]