Top Qs
Timeline
Chat
Perspective
November 1957 lunar eclipse
Total lunar eclipse November 7, 1957 From Wikipedia, the free encyclopedia
Remove ads
A total lunar eclipse occurred at the Moon’s descending node of orbit on Thursday, November 7, 1957,[1] with an umbral magnitude of 1.0305. A lunar eclipse occurs when the Moon moves into the Earth's shadow, causing the Moon to be darkened. A total lunar eclipse occurs when the Moon's near side entirely passes into the Earth's umbral shadow. Unlike a solar eclipse, which can only be viewed from a relatively small area of the world, a lunar eclipse may be viewed from anywhere on the night side of Earth. A total lunar eclipse can last up to nearly two hours, while a total solar eclipse lasts only a few minutes at any given place, because the Moon's shadow is smaller. Occurring about 5.1 days after apogee (on November 2, 1957, at 11:30 UTC), the Moon's apparent diameter was smaller.[2]
This lunar eclipse was the last of an almost tetrad, with the others being on May 24, 1956 (partial); November 18, 1956 (total); and May 13, 1957 (total).
Remove ads
Visibility
The eclipse was completely visible over the eastern half of Asia, Australia, and Alaska, seen rising over the western half of Asia, Europe, and much of central and east Africa and setting over much of North America.[3]
![]() ![]() |
Eclipse details
Shown below is a table displaying details about this particular solar eclipse. It describes various parameters pertaining to this eclipse.[4]
Remove ads
Eclipse season
This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.
Related eclipses
Summarize
Perspective
Eclipses in 1957
- An annular solar eclipse on April 30.
- A total lunar eclipse on May 13.
- A total solar eclipse on October 23.
- A total lunar eclipse on November 7.
Metonic
- Preceded by: Lunar eclipse of January 19, 1954
- Followed by: Lunar eclipse of August 26, 1961
Tzolkinex
- Preceded by: Lunar eclipse of September 26, 1950
- Followed by: Lunar eclipse of December 19, 1964
Half-Saros
- Preceded by: Solar eclipse of November 1, 1948
- Followed by: Solar eclipse of November 12, 1966
Tritos
- Preceded by: Lunar eclipse of December 8, 1946
- Followed by: Lunar eclipse of October 6, 1968
Lunar Saros 135
- Preceded by: Lunar eclipse of October 28, 1939
- Followed by: Lunar eclipse of November 18, 1975
Inex
- Preceded by: Lunar eclipse of November 27, 1928
- Followed by: Lunar eclipse of October 17, 1986
Triad
- Preceded by: Lunar eclipse of January 6, 1871
- Followed by: Lunar eclipse of September 7, 2044
Lunar eclipses of 1955–1958
This eclipse is a member of a semester series. An eclipse in a semester series of lunar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[5]
The penumbral lunar eclipse on January 8, 1955 occurs in the previous lunar year eclipse set, and the penumbral lunar eclipse on April 4, 1958 occurs in the next lunar year eclipse set.
Saros 135
This eclipse is a part of Saros series 135, repeating every 18 years, 11 days, and containing 71 events. The series started with a penumbral lunar eclipse on April 13, 1615. It contains partial eclipses from July 20, 1777 through October 28, 1939; total eclipses from November 7, 1957 through July 6, 2354; and a second set of partial eclipses from July 16, 2372 through September 19, 2480. The series ends at member 71 as a penumbral eclipse on May 18, 2877.
The longest duration of totality will be produced by member 37 at 106 minutes, 13 seconds on May 12, 2264. All eclipses in this series occur at the Moon’s descending node of orbit.[6]
Eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.
Tritos series
This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.
Inex series
This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.
Half-Saros cycle
A lunar eclipse will be preceded and followed by solar eclipses by 9 years and 5.5 days (a half saros).[8] This lunar eclipse is related to two total solar eclipses of Solar Saros 142.
November 1, 1948 | November 12, 1966 |
---|---|
![]() |
![]() |
Remove ads
See also
References
External links
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads