Top Qs
Timeline
Chat
Perspective
January 1955 lunar eclipse
Penumbral lunar eclipse January 8, 1955 From Wikipedia, the free encyclopedia
Remove ads
A penumbral lunar eclipse occurred at the Moon’s descending node of orbit on Saturday, January 8, 1955,[1] with an umbral magnitude of −0.1421. A lunar eclipse occurs when the Moon moves into the Earth's shadow, causing the Moon to be darkened. A penumbral lunar eclipse occurs when part or all of the Moon's near side passes into the Earth's penumbra. Unlike a solar eclipse, which can only be viewed from a relatively small area of the world, a lunar eclipse may be viewed from anywhere on the night side of Earth. Occurring about 2.2 days after perigee (on January 6, 1955, at 8:55 UTC), the Moon's apparent diameter was larger.[2]
Remove ads
Visibility
The eclipse was completely visible over east and north Asia, Australia, and northwestern North America, seen rising over much of the western half of Asia and northern Europe and setting over eastern North America and northwestern South America.[3]
![]() ![]() |
Eclipse details
Shown below is a table displaying details about this particular solar eclipse. It describes various parameters pertaining to this eclipse.[4]
Remove ads
Eclipse season
This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.
Related eclipses
Summarize
Perspective
Eclipses in 1955
- A penumbral lunar eclipse on January 8.
- A penumbral lunar eclipse on June 5.
- A total solar eclipse on June 20.
- A partial lunar eclipse on November 29.
- An annular solar eclipse on December 14.
Metonic
- Preceded by: Lunar eclipse of March 23, 1951
- Followed by: Lunar eclipse of October 27, 1958
Tzolkinex
- Preceded by: Lunar eclipse of November 28, 1947
- Followed by: Lunar eclipse of February 19, 1962
Half-Saros
- Preceded by: Solar eclipse of January 3, 1946
- Followed by: Solar eclipse of January 14, 1964
Tritos
- Preceded by: Lunar eclipse of February 9, 1944
- Followed by: Lunar eclipse of December 8, 1965
Lunar Saros 143
- Preceded by: Lunar eclipse of December 28, 1936
- Followed by: Lunar eclipse of January 18, 1973
Inex
- Preceded by: Lunar eclipse of January 28, 1926
- Followed by: Lunar eclipse of December 20, 1983
Triad
- Preceded by: Lunar eclipse of March 8, 1868
- Followed by: Lunar eclipse of November 8, 2041
Lunar eclipses of 1951–1955
This eclipse is a member of a semester series. An eclipse in a semester series of lunar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[5]
The penumbral lunar eclipses on March 23, 1951 and September 15, 1951 occur in the previous lunar year eclipse set, and the lunar eclipses on June 5, 1955 (penumbral) and November 29, 1955 (partial) occur in the next lunar year eclipse set.
Saros 143
This eclipse is a part of Saros series 143, repeating every 18 years, 11 days, and containing 72 events. The series started with a penumbral lunar eclipse on August 18, 1720. It contains partial eclipses from March 14, 2063 through June 21, 2225; total eclipses from July 2, 2243 through April 13, 2712; and a second set of partial eclipses from April 25, 2730 through July 9, 2856. The series ends at member 72 as a penumbral eclipse on October 5, 3000.
The longest duration of totality will be produced by member 36 at 99 minutes, 9 seconds on September 6, 2351. All eclipses in this series occur at the Moon’s descending node of orbit.[6]
Eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.
Tritos series
This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.
Inex series
This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.
Half-Saros cycle
A lunar eclipse will be preceded and followed by solar eclipses by 9 years and 5.5 days (a half saros).[8] This lunar eclipse is related to two partial solar eclipses of Solar Saros 150.
January 3, 1946 | January 14, 1964 |
---|---|
![]() |
![]() |
Remove ads
See also
Notes
External links
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads