Top Qs
Timeline
Chat
Perspective
November 1955 lunar eclipse
Partial lunar eclipse November 29, 1955 From Wikipedia, the free encyclopedia
Remove ads
A partial lunar eclipse occurred at the Moon’s descending node of orbit on Tuesday, November 29, 1955,[1] with an umbral magnitude of 0.1190. A lunar eclipse occurs when the Moon moves into the Earth's shadow, causing the Moon to be darkened. A partial lunar eclipse occurs when one part of the Moon is in the Earth's umbra, while the other part is in the Earth's penumbra. Unlike a solar eclipse, which can only be viewed from a relatively small area of the world, a lunar eclipse may be viewed from anywhere on the night side of Earth. Occurring only about 18.5 hours before perigee (on November 30, 1955, at 11:25 UTC), the Moon's apparent diameter was larger.[2]
Remove ads
Visibility
The eclipse was completely visible over eastern Europe, Asia, and Australia, seen rising over Africa and western Europe and setting over the central Pacific Ocean and northwestern North America.[3]
![]() ![]() |
Eclipse details
Shown below is a table displaying details about this particular lunar eclipse. It describes various parameters pertaining to this eclipse.[4]
Remove ads
Eclipse season
This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.
Related eclipses
Summarize
Perspective
Eclipses in 1955
- A penumbral lunar eclipse on January 8.
- A penumbral lunar eclipse on June 5.
- A total solar eclipse on June 20.
- A partial lunar eclipse on November 29.
- An annular solar eclipse on December 14.
Metonic
- Preceded by: Lunar eclipse of February 11, 1952
- Followed by: Lunar eclipse of September 17, 1959
Tzolkinex
- Preceded by: Lunar eclipse of October 18, 1948
- Followed by: Lunar eclipse of January 9, 1963
Half-Saros
- Preceded by: Solar eclipse of November 23, 1946
- Followed by: Solar eclipse of December 4, 1964
Tritos
- Preceded by: Lunar eclipse of December 29, 1944
- Followed by: Lunar eclipse of October 29, 1966
Lunar Saros 115
- Preceded by: Lunar eclipse of November 18, 1937
- Followed by: Lunar eclipse of December 10, 1973
Inex
- Preceded by: Lunar eclipse of December 19, 1926
- Followed by: Lunar eclipse of November 8, 1984
Triad
- Preceded by: Lunar eclipse of January 28, 1869
- Followed by: Lunar eclipse of September 29, 2042
Lunar eclipses of 1955–1958
This eclipse is a member of a semester series. An eclipse in a semester series of lunar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[5]
The penumbral lunar eclipse on January 8, 1955 occurs in the previous lunar year eclipse set, and the penumbral lunar eclipse on April 4, 1958 occurs in the next lunar year eclipse set.
Saros 115
This eclipse is a part of Saros series 115, repeating every 18 years, 11 days, and containing 72 events. The series started with a penumbral lunar eclipse on April 21, 1000. It contains partial eclipses from July 6, 1126 through September 30, 1270; total eclipses from October 11, 1288 through July 20, 1739; and a second set of partial eclipses from July 30, 1757 through February 13, 2082. The series ends at member 72 as a penumbral eclipse on June 13, 2280.
The longest duration of totality was produced by member 36 at 99 minutes, 47 seconds on May 15, 1631. All eclipses in this series occur at the Moon’s descending node of orbit.[6]
Eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.
Tritos series
This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.
Inex series
This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.
Half-Saros cycle
A lunar eclipse will be preceded and followed by solar eclipses by 9 years and 5.5 days (a half saros).[8] This lunar eclipse is related to two partial solar eclipses of Solar Saros 122.
Remove ads
See also
Notes
External links
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads