Top Qs
Timeline
Chat
Perspective
Rhombitetraapeirogonal tiling
Uniform tiling of the hyperbolic plane From Wikipedia, the free encyclopedia
Remove ads
Remove ads
In geometry, the rhombitetraapeirogonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of rr{∞,4}.
Rhombitetraapeirogonal tiling | |
---|---|
![]() Poincaré disk model of the hyperbolic plane | |
Type | Hyperbolic uniform tiling |
Vertex configuration | 4.4.∞.4 |
Schläfli symbol | rr{∞,4} or |
Wythoff symbol | 4 | ∞ 2 |
Coxeter diagram | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Symmetry group | [∞,4], (*∞42) |
Dual | Deltoidal tetraapeirogonal tiling |
Properties | Vertex-transitive |
Remove ads
Constructions
There are two uniform constructions of this tiling, one from [∞,4] or (*∞42) symmetry, and secondly removing the mirror middle, [∞,1+,4], gives a rectangular fundamental domain [∞,∞,∞], (*∞222).
Remove ads
Symmetry
The dual of this tiling, called a deltoidal tetraapeirogonal tiling represents the fundamental domains of (*∞222) orbifold symmetry. Its fundamental domain is a Lambert quadrilateral, with 3 right angles.
Related polyhedra and tiling
See also
Wikimedia Commons has media related to Uniform tiling 4-4-4-i.
References
- John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
- "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.
External links
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads