Top Qs
Timeline
Chat
Perspective
Rhombitetrahexagonal tiling
From Wikipedia, the free encyclopedia
Remove ads
Remove ads
In geometry, the rhombitetrahexagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of rr{6,4}. It can be seen as constructed as a rectified tetrahexagonal tiling, r{6,4}, as well as an expanded order-4 hexagonal tiling or expanded order-6 square tiling.
Rhombitetrahexagonal tiling | |
---|---|
![]() Poincaré disk model of the hyperbolic plane | |
Type | Hyperbolic uniform tiling |
Vertex configuration | 4.4.6.4 |
Schläfli symbol | rr{6,4} or |
Wythoff symbol | 4 | 6 2 |
Coxeter diagram | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Symmetry group | [6,4], (*642) |
Dual | Deltoidal tetrahexagonal tiling |
Properties | Vertex-transitive |
Remove ads
Constructions
There are two uniform constructions of this tiling, one from [6,4] or (*642) symmetry, and secondly removing the mirror middle, [6,1+,4], gives a rectangular fundamental domain [∞,3,∞], (*3222).
There are 3 lower symmetry forms seen by including edge-colorings: sees the hexagons as truncated triangles, with two color edges, with [6,4+] (4*3) symmetry.
sees the yellow squares as rectangles, with two color edges, with [6+,4] (6*2) symmetry. A final quarter symmetry combines these colorings, with [6+,4+] (32×) symmetry, with 2 and 3 fold gyration points and glide reflections.
This four color tiling is related to a semiregular infinite skew polyhedron with the same vertex figure in Euclidean 3-space with a prismatic honeycomb construction of .
Remove ads
Symmetry
The dual tiling, called a deltoidal tetrahexagonal tiling, represents the fundamental domains of the *3222 orbifold, shown here from three different centers. Its fundamental domain is a Lambert quadrilateral, with 3 right angles. This symmetry can be seen from a [6,4], (*642) triangular symmetry with one mirror removed, constructed as [6,1+,4], (*3222). Removing half of the blue mirrors doubles the domain again into *3322 symmetry.
Remove ads
Related polyhedra and tiling
Uniform tilings in symmetry *3222 | ||||
---|---|---|---|---|
![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() | |
![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() | ||
![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() |
See also
Wikimedia Commons has media related to Uniform tiling 4-4-4-6.
References
- John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
- "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.
External links
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads