Top Qs
Timeline
Chat
Perspective
Runcinated tesseractic honeycomb
From Wikipedia, the free encyclopedia
Remove ads
Remove ads
In four-dimensional Euclidean geometry, the runcinated tesseractic honeycomb is a uniform space-filling tessellation (or honeycomb) in Euclidean 4-space. It is constructed by a runcination of a tesseractic honeycomb creating runcinated tesseracts, and new tesseract, rectified tesseract and cuboctahedral prism facets.
Runcinated tesseractic honeycomb | |
---|---|
(No image) | |
Type | Uniform 4-honeycomb |
Schläfli symbol | t0,3{4,3,3,4} t0,3{4,3,31,1} |
Coxeter-Dynkin diagram | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4-face type | runcinated tesseract ![]() tesseract ![]() rectified tesseract ![]() cuboctahedral prism ![]() |
Cell type | Cuboctahedron ![]() Tetrahedron ![]() Cube ![]() Triangular prism ![]() |
Face type | {3}, {4} |
Vertex figure | triangular-antipodial antifastigium |
Coxeter group | = [4,3,3,4] = [4,3,31,1] |
Dual | |
Properties | vertex-transitive |
Remove ads
Related honeycombs
The [4,3,3,4], , Coxeter group generates 31 permutations of uniform tessellations, 21 with distinct symmetry and 20 with distinct geometry. The expanded tesseractic honeycomb (also known as the stericated tesseractic honeycomb) is geometrically identical to the tesseractic honeycomb. Three of the symmetric honeycombs are shared in the [3,4,3,3] family. Two alternations (13) and (17), and the quarter tesseractic (2) are repeated in other families.
Remove ads
See also
Regular and uniform honeycombs in 4-space:
Notes
References
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads