Top Qs
Timeline
Chat
Perspective

Rectified tesseract

From Wikipedia, the free encyclopedia

Rectified tesseract
Remove ads

In geometry, the rectified tesseract, rectified 8-cell is a uniform 4-polytope (4-dimensional polytope) bounded by 24 cells: 8 cuboctahedra, and 16 tetrahedra. It has half the vertices of a runcinated tesseract, with its construction, called a runcic tesseract.

Rectified tesseract
Thumb
Schlegel diagram
Centered on cuboctahedron
tetrahedral cells shown
Type Uniform 4-polytope
Schläfli symbol r{4,3,3} =
2r{3,31,1}
h3{4,3,3}
Coxeter-Dynkin diagrams

=
Cells 24 8 (3.4.3.4)
16 (3.3.3)
Faces 88 64 {3}
24 {4}
Edges 96
Vertices 32
Vertex figure
(Elongated equilateral-triangular prism)
Symmetry group B4 [3,3,4], order 384
D4 [31,1,1], order 192
Properties convex, edge-transitive
Uniform index 10 11 12
Thumb
Net

It has two uniform constructions, as a rectified 8-cell r{4,3,3} and a cantellated demitesseract, rr{3,31,1}, the second alternating with two types of tetrahedral cells.

E. L. Elte identified it in 1912 as a semiregular polytope, labeling it as tC8.

Remove ads

Construction

The rectified tesseract may be constructed from the tesseract by truncating its vertices at the midpoints of its edges.

The Cartesian coordinates of the vertices of the rectified tesseract with edge length 2 is given by all permutations of:

Remove ads

Images

More information Coxeter plane, B4 ...
Thumb
Wireframe
Thumb
16 tetrahedral cells

Projections

In the cuboctahedron-first parallel projection of the rectified tesseract into 3-dimensional space, the image has the following layout:

  • The projection envelope is a cube.
  • A cuboctahedron is inscribed in this cube, with its vertices lying at the midpoint of the cube's edges. The cuboctahedron is the image of two of the cuboctahedral cells.
  • The remaining 6 cuboctahedral cells are projected to the square faces of the cube.
  • The 8 tetrahedral volumes lying at the triangular faces of the central cuboctahedron are the images of the 16 tetrahedral cells, two cells to each image.

Alternative names

  • Rit (Jonathan Bowers: for rectified tesseract)
  • Ambotesseract (Neil Sloane & John Horton Conway)
  • Rectified tesseract/Runcic tesseract (Norman W. Johnson)
    • Runcic 4-hypercube/8-cell/octachoron/4-measure polytope/4-regular orthotope
    • Rectified 4-hypercube/8-cell/octachoron/4-measure polytope/4-regular orthotope

Runcic cubic polytopes

More information Runcic n-cubes, n ...

Tesseract polytopes

More information B4 symmetry polytopes, Name ...
Remove ads

References

  • H.S.M. Coxeter:
    • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
    • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6
      • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
      • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
      • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • Norman Johnson Uniform Polytopes, Manuscript (1991)
    • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. (1966)
  • 2. Convex uniform polychora based on the tesseract (8-cell) and hexadecachoron (16-cell) - Model 11, George Olshevsky.
  • Klitzing, Richard. "4D uniform polytopes (polychora) o4x3o3o - rit".
More information Family, Regular polygon ...
Remove ads
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads