Top Qs
Timeline
Chat
Perspective

February 2009 lunar eclipse

Penumbral lunar eclipse 9 February 2009 From Wikipedia, the free encyclopedia

February 2009 lunar eclipse
Remove ads

A penumbral lunar eclipse occurred at the Moon’s descending node of orbit on Monday, February 9, 2009,[1] with an umbral magnitude of −0.0863. A lunar eclipse occurs when the Moon moves into the Earth's shadow, causing the Moon to be darkened. A penumbral lunar eclipse occurs when part or all of the Moon's near side passes into the Earth's penumbra. Unlike a solar eclipse, which can only be viewed from a relatively small area of the world, a lunar eclipse may be viewed from anywhere on the night side of Earth. Occurring about 1.9 days after perigee (on February 7, 2009, at 15:10 UTC), the Moon's apparent diameter was larger.[2]

Quick Facts Date, Gamma ...

This eclipse was the first of four lunar eclipses in 2009, with the others occurring on July 7 (penumbral), August 6 (penumbral), and December 31 (partial).

It also happened on the Lantern Festival, the first since February 20, 1989.

Remove ads

Visibility

The eclipse was completely visible over east Asia and Australia, seen rising over east Africa, eastern Europe, and west Asia and setting over North America and the eastern Pacific Ocean.[3]

Thumb Thumb
Hourly motion shown right to left
Thumb
The Moon's hourly motion across the Earth's shadow in the constellation of Leo.
Thumb
Visibility map

Images

Thumb
This simulated view shows the Earth and Sun as viewed from the center of the Moon near contact points P1 and P4. The eclipse will be visible from Earth from the locations of the world as seen on the Earth above.

Eclipse details

Shown below is a table displaying details about this particular solar eclipse. It describes various parameters pertaining to this eclipse.[4]

More information Parameter, Value ...
Remove ads

Eclipse season

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.

More information January 26Ascending node (new moon), February 9Descending node (full moon) ...
Remove ads
Summarize
Perspective

Eclipses in 2009

Metonic

Tzolkinex

Half-Saros

Tritos

Lunar Saros 143

Inex

Triad

  • Preceded by: Lunar eclipse of April 11, 1922
  • Followed by: Lunar eclipse of December 11, 2095

Lunar eclipses of 2006–2009

This eclipse is a member of a semester series. An eclipse in a semester series of lunar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[5]

The lunar eclipses on July 7, 2009 (penumbral) and December 31, 2009 (partial) occur in the next lunar year eclipse set.

More information Lunar eclipse series sets from 2006 to 2009, Descending node ...

Saros 143

This eclipse is a part of Saros series 143, repeating every 18 years, 11 days, and containing 72 events. The series started with a penumbral lunar eclipse on August 18, 1720. It contains partial eclipses from March 14, 2063 through June 21, 2225; total eclipses from July 2, 2243 through April 13, 2712; and a second set of partial eclipses from April 25, 2730 through July 9, 2856. The series ends at member 72 as a penumbral eclipse on October 5, 3000.

The longest duration of totality will be produced by member 36 at 99 minutes, 9 seconds on September 6, 2351. All eclipses in this series occur at the Moon’s descending node of orbit.[6]

More information Greatest, First ...

Eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

More information Series members 6–27 occur between 1801 and 2200: ...

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

More information Series members between 1801 and 2183 ...

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

More information Series members between 1801 and 2200 ...

Half-Saros cycle

A lunar eclipse will be preceded and followed by solar eclipses by 9 years and 5.5 days (a half saros).[8] This lunar eclipse is related to two partial solar eclipses of Solar Saros 150.

February 5, 2000 February 15, 2018
Thumb Thumb
Remove ads

See also

Notes

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads