Top Qs
Timeline
Chat
Perspective
Snub tetraapeirogonal tiling
From Wikipedia, the free encyclopedia
Remove ads
Remove ads
In geometry, the snub tetraapeirogonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of sr{∞,4}.
Snub tetraapeirogonal tiling | |
---|---|
![]() Poincaré disk model of the hyperbolic plane | |
Type | Hyperbolic uniform tiling |
Vertex configuration | 3.3.4.3.∞ |
Schläfli symbol | sr{∞,4} or |
Wythoff symbol | | ∞ 4 2 |
Coxeter diagram | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Symmetry group | [∞,4]+, (∞42) |
Dual | Order-4-infinite floret pentagonal tiling |
Properties | Vertex-transitive Chiral |
Remove ads
Images
Drawn in chiral pairs, with edges missing between black triangles:
Related polyhedra and tiling
The snub tetrapeirogonal tiling is last in an infinite series of snub polyhedra and tilings with vertex figure 3.3.4.3.n.
Remove ads
See also
Wikimedia Commons has media related to Uniform tiling 3-3-4-3-i.
References
- John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
- "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.
External links
- Weisstein, Eric W. "Hyperbolic tiling". MathWorld.
- Weisstein, Eric W. "Poincaré hyperbolic disk". MathWorld.
- Hyperbolic and Spherical Tiling Gallery
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads