Top Qs
Timeline
Chat
Perspective

Pentagonal icositetrahedron

Catalan solid with 24 faces From Wikipedia, the free encyclopedia

Pentagonal icositetrahedron
Remove ads
Remove ads

In geometry, a pentagonal icositetrahedron or pentagonal icosikaitetrahedron[1] is a Catalan solid which is the dual of the snub cube. In crystallography it is also called a gyroid.[2][3]

Pentagonal icositetrahedron
ThumbThumb
(Click ccw or cw for rotating models.)
TypeCatalan
Conway notationgC
Coxeter diagram
Face polygon
irregular pentagon
Faces24
Edges60
Vertices38 = 6 + 8 + 24
Face configurationV3.3.3.3.4
Dihedral angle136° 18' 33'
Symmetry groupO, 1/2BC3, [4,3]+, 432
Dual polyhedronsnub cube
Propertiesconvex, face-transitive, chiral
Thumb
Net
Thumb
A geometric construction of the Tribonacci constant (AC), with compass and marked ruler, according to the method described by Xerardo Neira.
Thumb
3d model of a pentagonal icositetrahedron

It has two distinct forms, which are mirror images (or "enantiomorphs") of each other.

Remove ads

Construction

The pentagonal icositetrahedron can be constructed from a snub cube without taking the dual. Square pyramids are added to the six square faces of the snub cube, and triangular pyramids are added to the eight triangular faces that do not share an edge with a square. The pyramid heights are adjusted to make them coplanar with the other 24 triangular faces of the snub cube. The result is the pentagonal icositetrahedron.

Remove ads

Cartesian coordinates

Denote the tribonacci constant by . (See snub cube for a geometric explanation of the tribonacci constant.) Then Cartesian coordinates for the 38 vertices of a pentagonal icositetrahedron centered at the origin, are as follows:

  • the 12 even permutations of (±1, ±(2t+1), ±t2) with an even number of minus signs
  • the 12 odd permutations of (±1, ±(2t+1), ±t2) with an odd number of minus signs
  • the 6 points t3, 0, 0), (0, ±t3, 0) and (0, 0, ±t3)
  • the 8 points t2, ±t2, ±t2)

The convex hulls for these vertices[4] scaled by result in a unit circumradius octahedron centered at the origin, a unit cube centered at the origin scaled to , and an irregular chiral snub cube scaled to , as visualized in the figure below:

Thumb
Remove ads

Geometry

Summarize
Perspective

The pentagonal faces have four angles of and one angle of . The pentagon has three short edges of unit length each, and two long edges of length . The acute angle is between the two long edges. The dihedral angle equals .

If its dual snub cube has unit edge length, its surface area and volume are:[5]

Remove ads

Orthogonal projections

The pentagonal icositetrahedron has three symmetry positions, two centered on vertices, and one on midedge.

More information Projective symmetry, Image ...

Variations

Isohedral variations with the same chiral octahedral symmetry can be constructed with pentagonal faces having 3 edge lengths.

This variation shown can be constructed by adding pyramids to 6 square faces and 8 triangular faces of a snub cube such that the new triangular faces with 3 coplanar triangles merged into identical pentagon faces.

Thumb
Snub cube with augmented pyramids and merged faces
Thumb
Pentagonal icositetrahedron
Thumb
Net
Remove ads
Summarize
Perspective
Thumb
Spherical pentagonal icositetrahedron

This polyhedron is topologically related as a part of sequence of polyhedra and tilings of pentagons with face configurations (V3.3.3.3.n). (The sequence progresses into tilings the hyperbolic plane to any n.) These face-transitive figures have (n32) rotational symmetry.

More information Symmetry n32, Spherical ...

The pentagonal icositetrahedron is second in a series of dual snub polyhedra and tilings with face configuration V3.3.4.3.n.

More information Symmetry 4n2, Spherical ...

The pentagonal icositetrahedron is one of a family of duals to the uniform polyhedra related to the cube and regular octahedron.

More information Uniform octahedral polyhedra, Symmetry: [4,3], (*432) ...
Remove ads

References

Loading content...
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads